Modeled Electroformed MEMS Variable Capacitor for Cobalt Iron Alloy Magnetostriction Measurements

Eric D. Langlois, Patrick S. Finnegan, Jamin R. Pillars, Todd C. Monson, Mark H. Ballance, Christopher R. St John, Charles J. Pearce and Adam J. Thorpe
Electrodeposited Magnetostrictive CoFe

Previous work:

Our work:

Expression du Tremolet de Lacheisserie and Peuzin

$$\lambda_{eff} (D_{sat}) = \frac{2(D_{\parallel} - D_{\perp})E_s t_s^2 (1 + \nu_f)}{9E_f L^2 t_f (1 + \nu_s)}$$

Need a method for measuring λ to obtain fundamental performance metrics λ_s and $d_{33,m}$ for magnetostrictive materials.
Optical Lever

- Strain resolution (nε)
- Incompatible with electrodeposition

Laser Doppler Vibrometer (LDV)

- Strain resolution (± 5με)
- Not good for thin films
- Film adhesion poor

Staruch, M., NRL, communications

Resistive Strain Gauge

- Strain resolution (pε)
- Compatible with electrodeposition
- Torsional effects
Both magnetoelastic and electrostatic models were created. Only magnetoelastic model will be presented.
Design Features

Advantages
- Chip-scale (5mm (W) X 10mm (L))
- Orthogonal (patterned by photolithography)
- Parallel sensors possible (boosts signal)
- Less prone to torsional effects (improves accuracy)
- Reduced instrumentation complexity

Disadvantages
- Complex fabrication (Sandia is good at this!)

Agilent 4284A 20Hz-1MHz Precision LCR Meter

Single orthogonal pair Custom PCB

Triple orthogonal pair
Simulation – Physics Interfaces and Mesh

Solid Mechanics (solid)

1) \[0 = \nabla \cdot S + F_v \]

\(S = \) stress tensor
\(F_v = \) body force per volume

2) \[\varepsilon_{me} = \frac{3 \lambda_s}{2 M_s^2} \text{dev}(M \otimes M) \]

\(\lambda_s = \) saturation magnetostriction
\(M_s = \) saturation magnetization

I.C.’s: \(u = (0, 0, 0) \) m
\(\delta u/\delta t = (0, 0, 0) \) m/s

B.C.’s: cantilever anchor

Magnetic Fields (mf)

2) \[B = \nabla \times (A_b + A_r) \]

\(A_b = B \cdot y = \) vector potential

I.C.’s: \(A = (0, 0, 0) \)

B.C.’s: \(n \times A = 0 \) (mag insulation)

Magnetostriction (pzm1)

Coupling Type: Fully Coupled

Initial B-H curve (measured)

User controlled mesh with free tetrahedrals of size “Normal”.

Air

IED’s
Simulation – Study and Results

Stationary Study
- Parametric sweep: $\lambda_S = 50-100 \text{ ppm} @ B = 1 \text{ T}$
- Intent: magnetically saturate film without touching bottom plate
- Parametric sweep: $B = 0 \text{ to } 1 \text{ T}$

$\text{3D surface displacement plot (MEMS Cap 1)}$

$C = \sum_{i=0}^{n} \alpha \varepsilon_0 \text{depth} \int_{0}^{\text{width}} \frac{dx}{1 + w}$

$n = \text{number of block types used}$
$\alpha = \text{symmetry (2)}$
$\text{depth} = \text{block dimension (y-axis)}$
$\text{width} = \text{block dimension (x-axis)}$
$w = \text{z-displacement}$
Sensitivity and Range

<table>
<thead>
<tr>
<th>Device</th>
<th>Quasilinear Range (B = 0.01 to 0.1 T)</th>
<th>Sensitivity (μm/pF)</th>
<th>λ_s (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMS Cap 1</td>
<td>0.14 to 0.57 μm 1.3 to 2.2 pF</td>
<td>0.48</td>
<td>100</td>
</tr>
</tbody>
</table>

MEMS Cap 1 sensitivity plot
Conclusions

• New method for measuring magnetostriction in electroplated CoFe alloy films needed → MEMS variable capacitors.
• Sensitivity of 0.48 μm/pF was achieved with the MEMS Cap 1 design.
• Capacitor was designed to measure films with saturation magnetostriction values ranging from $\lambda_S = 1$ to 100 ppm.
• Alternative designs under consideration.
• 1st pass capacitors under development.
Acknowledgements:

- Individuals for their support and contributions to the vision of this work: Dianna Blair, (Project Manager), Keith Ortiz, Wahid Hermina.
- Metglas Inc. for providing free samples of magnetostrictive alloy ribbon used for calibration of our magnetic test equipment.
- This project was supported by Laboratory Directed Research and Development (LDRD) Project numbers 150356 and 200169. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Independent verification of magnetostriction in Sandia bimorph CoFe/Copper cantilevers confirmed by Margo Staruch, Ph.D., Naval Research Labs (NRL).
Measurement Apparatus: (MPMS-7) superconducting quantum interference device (SQUID) magnetometer.

Quantum Design Magnetic Property Measurement System (MPMS) probe assembly

Agilent 4284A 20Hz-1MHz Precision LCR Meter

Custom PCB
Plating Bath

<table>
<thead>
<tr>
<th></th>
<th>Chemicals</th>
<th>H$_3$BO$_3$</th>
<th>Co(H$_2$SO$_3$)$_2$</th>
<th>TMAB</th>
<th>Sorbitol</th>
<th>Na Saccharin salt</th>
<th>Ascorbic acid</th>
<th>Fe(NH$_4$)$_2$(SO$_4$)$_2$ · 6H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoFe</td>
<td>Conc. (mol/L)</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neutronex 309i Gold – 2.4 troy oz gold/gal, 40 ppm thallium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>Conditions</td>
<td>700 Hz pulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 mA/cm2</td>
</tr>
</tbody>
</table>

*CoFe: Bath pH=2.0; Bath temperature=50°C
Au: Bath pH=9.5; Bath temperature=50°C
Contact Pads 2 \(\mu \text{m} \) Cu

Capacitor Top Plate (Movable) 9 \(\mu \text{m} \) Cu

CoFe/Au Bimorph Cantilever 2 \(\mu \text{m} \) CoFe/9 \(\mu \text{m} \) Cu

Electrostatic Actuator 75 nm Pt, evaporated

Capacitor Bottom Plate (Fixed) 2 \(\mu \text{m} \) Cu

Model courtesy of Adam Thorpe, Sandia National Laboratories