NUMERICAL MODELING OF RESISTIVE SWITCHING IN RRAM DEVICE.

Dipesh Niraula and Victor Karpov Department of Physics and Astronomy The University of Toledo, Toledo, OH dipesh.niraula@rockets.utoledo.edu

COMSOL CONFERENCE 2017 BOSTON

Research motivation: Bipolar resistive switching

Statement of goal

- Develop a numerical model of bipolar filamentary RRAM operation based on physical theory,
 - independent of microscopic structure details
 - RRAM characteristics described via material parameters
 - generates device I-V characteristics

Outline

Thermodynamics theory of filament switching

- Mechanism of filamentary switching
- Physics behind switching
- Three Phase System
- Free energy
- Numerical Modeling
- •Partial Differential Equations
- Material Parameters and Boundary Conditions
- Workflow
- Free energy and I-V Characteristics

Mechanism of filamentary switching

Physics Behind Switching: current carrying CF charges and produces radial field

Field Induced Nucleation then shunting ~1V/10nm = 10⁸ V/m

CF charging polarizes insulating host matrix Reversing Polarity charges CF unfavorable to the inherited polarization of the host Charged CF produces a strong lateral field in its vicinity opposite to the host polarization, then dissolves

Note1: CF has finite capacitance Note2: wire charging effect (due to Weber, 1852) – overlooked in RRAM community

Phase Transformations: thermodynamic analysis is possible due to fast thermalization, minimum of three phases required to describe IV

Thermal and Electric energy driven phase transformation

Free Energy = Thermal + Electrostatic + Phase transition (Surface & Volume)

• The free energy of the ON state,

$$F = \int \rho C_P \delta T dx^3 + \frac{1}{2} \int \epsilon |E|^2 dx^3 + 2\pi r h \sigma + \pi r^2 h \delta \mu_1$$

• The free energy of the OFF state,

$$F = \int \rho C_P \delta T dx^3 + \frac{1}{2} \int \epsilon |E|^2 dx^3 + 2\pi r l\sigma + \pi r^2 l \delta \mu_2$$

 ρ is material density C_P is specific heat capacity at constant pressure ϵ is the permittivity σ is the interfacial energy $\delta \mu_1, \delta \mu_2$ is the difference in the chemical potential between insulating and unstable conducting phase, and metastable and unstable conducting phase

- Equations to solve
 - Maxwell equation : Electric field distribution
 - Fourier Law : Temperature distribution

r varies from 1nm to device radius for a fixed Source voltage

l varies from 0.5nm to *h* for fixed *r* and for a fixed source voltage

PDE Solver: COMSOL Multiphysics[®]

- COMSOL uses finite element method to solve PDEs and has an excellent graphical user interface
- Solves following PDE to calculate the field and temperature distributions

Electrical CurrentsHeat Transfer in SolidsMultiphysics $\vec{\nabla}.\vec{J} = 0$ $-k\vec{\nabla}.\vec{\nabla}T = Q_s$ $Q_S = \vec{J}.\vec{E}$ $\vec{J} = \sigma_c \vec{E}$ $\vec{E} = -\vec{\nabla}V$ \vec{V}

• COMSOL also performs the necessary integration for free energy

Material parameters and Boundary Conditions

Table.1. Material Parameters					
Material	к [W/(Km)]	σ _c [S/m]	C _P [J/(kgK)]	3	ρ[kg/m³]
TiN	11.9	106	545.33	-106	5.22×10 ³
HfO ₂	0.5	10+	120	25	10×10 ³
HfO _{2-x}	0.65	2×10 ⁴	140*	-106*	12×10 ^{3*}
Hf	23	5×10 ⁶	144	-106	13.3×10 ³
SiO ₂	1.38	10-14	703	3.9	2.2×10 ³
Air	0.015	5×10-15	1000	1	1.225

*Assumed values, lies in between Hf and HfO_2

Table.2. Various Parameters

Parameters	Value		
σ	0.01 [J/m ²]		
δμ	3×10 ⁹ [J/m ³]		
R_L	15 kΩ		
TBR HfO ₂	3[m ² K/GW]		
TBR TiN	5[m ² K/GW]		

Additional Boundary Condition

- Thermal Boundary Resistance (*Thin Layer*)
- Heat lost by Radiation (*Diffusive Surface*)

Work Flow between MATLAB[®] scripts: MATLAB talks to COMSOL Multiphysics[®] via LiveLink[™] to MATLAB[®], utilized to find minimum in Free Energy

Free Energy Plots: system evolves through minimum energy points

Simulated I-V Characteristics: corresponds to the stable radius and gap lengths

CONCLUSIONS:

- COMSOL/MATLAB model verifies thermodynamic model
- Discrepancy in V_{SET} and $I_{R,SAT}$ values
 - Optimization of material parameters
 - Further refinement of filament description
- Modeling full I-V characteristics in progress

Acknowledgement

- This work was supported in part by Semiconductor Research Corporation (SRC) under Contract No.2016LM-2654.
- Liaisons
 - Ilya V. Karpov (Component Research, Intel)
 - Roza Kotlyar (Process Technology Modeling, Intel)

COMSOL CONFERENCE 2017 BOSTON