COMSOL Multiphysics® Implementation of a Genetic Algorithm Routine for Metasurface Optimization

Bryan Adomanis¹, Dr. D. Bruce Burckel², Dr. Michael Marciniak¹

¹Dept. of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio
²Sandia National Laboratories, Albuquerque, New Mexico
Overview

Motivation
Previous Works
Theoretical Orientation
Motivation for Flat Lenses

• **Goal:**
 Create a **functional, single-interface, flat lens** in the infrared regime that mimics the refractive focusing function of a bulk curved lens in a sub-band between 3 – 12 μm

• **Targeted Issue:**
 Functionality suffers: 2-D plasmonic lens efficiency is ~1%–20%

• **Proposed Solution:**
 Use COMSOL to create a design optimization tool that maximizes **efficiency** for M/LWIR metasurface optics
Validation of COMSOL-Based Metasurface Lens Design (2016)

The AFIT of Today is the Air Force of Tomorrow.

- Phase calculation for $5 \mu m, N = 8, f = 10 \, cm$

- Fabricated 19 cylindrical lenses @ SNL

- Experimental validation

ϕ

Position along optical axis $\sim 10.5 \, cm$

$\lambda = 8 \, \mu m$
Potential Solution: 3-D Structures

• 3-D Structures offer:
 o Additional field coupling modes
 o Improved span of phase control
 o HUGE design space

• Issues:
 o Often non-analytical
 o More metal = more absorption loss
 o HUGE design space
 o Fabrication (!)

Cut-wire pairs:

Split-ring resonators:

Stacked

Multi-faced
Membrane Projection Lithography

The AFIT of Today is the Air Force of Tomorrow.

- MPL produces out-of-plane scatterers with high fidelity

- Si/Air unit cells of arbitrary shape/periodicity

- Large area (wafer-scale)

- Metal deposition of any open shape...

MPL-Based 3-D Grid

• Assume we do not know which 3-D geometries are “best”…

Could we determine this via a grid of voxels?

• How do we choose the optimal grid layout of 1’s & 0’s?
Genetic Algorithm for MPL Grid Optimization

- **GA overview:** takes individual with best “fit”, evolves genes until optimal
 - Genes = voxel states → “1” for metal, “0” for dielectric
 - Individuals = models; population = set of models
 - Fitness = how well solution matches desired outcome (e.g., max/min or target value)

- **COMSOL** w/ LiveLink for MATLAB and Application Programming Interface
 - Create/solve models w/ random grids
 - Determine which voxel layout (genes) gives best fit (“parents”)
 - Evolve genes, create new population of “children” based on evolved genes
 - Iterate!

- **MATLAB + COMSOL**
 - Generation (Initial) Population (Initial)
 - Functional Evaluation
 - Fitness/Cost Function

- **COMSOL**
 - Parent Selection
 - Crossover

- **MATLAB**
 - Crossover
 - Mutation
 - Check/Continue/Stop

- **COMSOL**
 - Generation (2nd)
COMSOL Models

Validation Model
Membrane Projection Lithography (MPL) Model
The AFIT of Today is the Air Force of Tomorrow.

Objective: validate GA routine against multi-objective fitness function, seeking a Huygens-like scatter:

\[
F(w_\Delta, w_f) = w_\Delta \frac{\Delta|E|^2 - \min(\Delta|E|^2)}{\max(\Delta|E|^2) - \min(\Delta|E|^2)} + w_f \frac{|E^f|^2 - \min(|E^f|^2)}{\max(|E^f|^2) - \min(|E^f|^2)}
\]
COMSOL Validation of Huygens Source Model

The AFIT of Today is the Air Force of Tomorrow.

- What constitutes “best” in a multi-objective solution space?
 - Largest $|E_{far}^{fwd}|^2$ was $30\ dBv$, with $\Delta |E_{f-b}^{far}|^2 = |E_{fwd}^{far}|^2 - |E_{back}^{far}|^2 = 20\ dBv$
 - Largest $\Delta |E_{f-b}^{far}|^2$ was $-28\ dBv$, with $|E_{fwd}^{far}|^2 = 26\ dBv$
COMSOL Validation of Huygens Source Model

- **Best**: 26 dBv, −28 dBv
- **Modified**: 26 dBv, −24 dBv

Current density

Mirrored full structure

= flipped voxels

Strong forward propagation
MPL-Based Model: Unit Cell Analysis

Objective: use GA to identify voxel grid layout for maximum transmittance \(T \) at targeted phase points \(\Phi_0 \):

\[
F(w_\Phi, w_s) = w_\Phi \frac{\sigma_\Phi^2}{|\Phi - \Phi_0|^2 + \sigma_\Phi^2} + w_s \frac{\sigma_s^2}{|S_{21}|^2 - T_0} + \sigma_s^2
\]

Example MPL structures

Burckel et al., IEEE EDSSC (2015); Burckel et al., Adv Mater, 22, 5053 (2010)
Baseline of Undecorated MPL Si Boxes

The AFIT of Today is the Air Force of Tomorrow.

\[T = |S_{21}|^2 \]

Diffraction edge = 2.33 \(\mu m \)

Design of interest:
\[t_{wall} = 300 \text{nm} \]
\[a = 2.3 \mu m \]
\[\Phi = -113^\circ \]

Undecorated Model

Wall Thickness
- 100 \(\mu m \)
- 120 \(\mu m \)
- 140 \(\mu m \)
- 160 \(\mu m \)
- 180 \(\mu m \)
- 200 \(\mu m \)
- 220 \(\mu m \)
- 240 \(\mu m \)
- 260 \(\mu m \)
- 280 \(\mu m \)
- 300 \(\mu m \)
- 320 \(\mu m \)
- 340 \(\mu m \)
- 360 \(\mu m \)
- 380 \(\mu m \)
- 400 \(\mu m \)
- 420 \(\mu m \)
- 440 \(\mu m \)
- 460 \(\mu m \)
- 480 \(\mu m \)
- 500 \(\mu m \)

Periodicity (nm)

1 1.5 2 2.5 3 3.5 4

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180

Air University: The Intellectual and Leadership Center of the Air Force
Aim High...Fly - Fight - Win

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
COMSOL Validation of MPL Model

The AFIT of Today is the Air Force of Tomorrow.

Target: 0°
Best: $\Phi = -0.15^\circ$
$T = 0.52$
Modified: $\Phi = 13.7^\circ$
$T = 0.49$

$\Phi = \arg[S_{21}]^2$ °

$\Delta \Phi \approx 113^\circ$

$
\begin{align*}
\Phi_{\text{target}} & = 0^\circ \\
T & = 0.746
\end{align*}$
COMSOL Validation of MPL Model
The AFIT of Today is the Air Force of Tomorrow.

- **Best:**
 \[\Phi = -0.15^\circ \]
 \[T = 0.52 \]

- **Modified:**
 \[\Phi = 13.7^\circ \]
 \[T = 0.49 \]
 \(\text{= flipped voxels} \)

Incident field

Propagated plane wave develops \(\sim 1 \text{um (}\lambda/8\text{)} \)

grid width/6

\(\Phi = \) best phase shift
\(T = \) best transmission

\(\text{Best:} \)
\[\Phi = -0.15^\circ \]
\[T = 0.52 \]

Propagated plane wave

\(\sim 1 \text{um (}\lambda/8\text{)} \)

grid width/6

\(\Phi = \) modified phase shift
\(T = \) modified transmission

\(\text{Modified:} \)
\[\Phi = 13.7^\circ \]
\[T = 0.49 \]
COMSOL Validation of MPL Model

The AFIT of Today is the Air Force of Tomorrow.

- **Repeatability:**
 - Accurately hit all 8 target phases
 - Transmittances typically between $T = 0.3 - 0.5$
 - Required 20 – 30 iterations for convergence

- **Flexibility:**
 - Dozens of designs per ° phase
 - 1° – 10° span in Φ_0 may provide 10% – 20% increase in T
Early Fabrication

First Etch/Deposition
EBL Etch & Au Deposition

The AFIT of Today is the Air Force of Tomorrow.

• VERY early fabrication attempts @ 250nm resolution
 o First-ever use of e-beam lithographic mask for MPL process
 o Tested on low-quality cubic Si arrays—but not perfectly cubic!
 ▪ Poor deposition of metal on upper/side walls as result

• Verdict: clear corner/corner contact, sharp features
(VERY!) Recent Improvements

The AFIT of Today is the Air Force of Tomorrow.

<table>
<thead>
<tr>
<th>T</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.61</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Phase (°)	Δ Phase (°)
113 | 134 |

<table>
<thead>
<tr>
<th>T</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.46</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Phase (°)	Δ Phase (°)
0.01 | 113 |
Conclusion

The AFIT of Today is the Air Force of Tomorrow.

COMSOL demonstrated that a GA routine can generate a 3-D plasmonic structure capable of exceeding the physical limitations imposed by 2-D planar architectures for development of improved metasurface optics.

- From a performance/design standpoint, the **COMSOL**-based GA:
 - Delivered a solution that met technical goals in phase and amplitude
 - Demonstrated a robustness in reliability and flexibility

- From a computational standpoint, the **COMSOL**-based GA:
 - Successfully implemented a GA routine into a FEM computational software suite
 - Introduces a great savings for the user—no spectral sweep necessary!
 - We did not include a quantitative study on time savings, but it is easily inferred
 - Allows for optimal geometries that conventional intuition typically cannot predict

- **Thank you for your attention!** Contact: bryan.adomanis@us.af.mil
The AFIT of Today is the Air Force of Tomorrow.

Additional Material

Limitations of 2-D Metasurfaces
Results of “brick” grid MPL Design
Limitations of 2-D Planar Metasurfaces

- Fundamentally, thin 2-D metasurfaces cannot:
 - reach desired phase range in co-polarized states
 - reach high amplitudes in cross-polarized states

\[
|t_{co-pol}|^2 + \left| \sqrt{\frac{n_1}{n_2}} t_{co-pol} - 1 \right| \leq 1
\]

\[
|r_{co-pol}|^2 + \frac{n_2}{n_1} |r_{co-pol} + 1| \leq 1
\]

\[
|t_{x-pol}|^2 \leq \frac{n_1 n_2}{(n_1 + n_2)^2}
\]

\[
|r_{x-pol}|^2 \leq \frac{n_1^2}{(n_1 + n_2)^2}
\]

“Fabricate-able” Voxel Geometries

- Adjusted the square offset to include half-voxel edges. Makes for a ‘brick’ pattern
- Produces great results at the targeted phase point (0°), and is much more fabricable

Table

<table>
<thead>
<tr>
<th>T</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.46</td>
<td>0.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase (°)</th>
<th>Δ Phase (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.007</td>
<td>113</td>
</tr>
</tbody>
</table>