Modeling and Analysis of Aberrations in Electron Beam Melting (EBM) Systems
A. Azhirnian¹, D. Svensson²
1. Chalmers University of Technology, Gothenburg, Sweden

Introduction: In EBM, a technology pioneered by Arcam AB, mA currents of electrons are combined with kV voltages to melt 100 µm sized metal grains. The focusing and deflection systems were proven to cause aberrations in 1936 [1]. They therefore impose a limit on the size and resolution of what the EBM machine can build.

Implementation:
• AC/DC Module
• Particle Tracing Module
• Livelink™ for MATLAB®
• Extensive scripting
• Up to 2 M elements.

Conclusions: We have built a framework for simulating magnetic multipoles in a tight geometry with the COMSOL Multiphysics® simulation software. We have studied aberrations in EBM, with methods adapted from electron microscopy and substantial amounts of computation.

References:

Figure 1. Aberration basis functions (left) and aberrated wavefront (right).

Figure 2. Model meshed for a deflected beam.

Figure 3. Geometry of superposition coil.

Figure 4. Multipole fields from 4, 6, 8, 12 and 24 poles.

Figure 5. Magnetic fields along z axis of single dipole lens used for deflection.

Figure 6. Aberration spectrum of beam in figure 7.

Figure 7. Poincaré section of focused reference beam (left) and one that has been defocused by 15 mm (right).