

SIMULATION OF IMPULSE ARC

DISCHARGE IN LINE LIGHTNING

PROTECTION DEVICES.

Alexander Chusov

Lightning protection of overhead lines

Lightning protection of overhead lines

MULTI-CHAMBER ARRESTERS

Lightning protection of overhead power lines up to 35 kV

20 kV

35 kV

MULTI-CHAMBER ARRESTERS

FASTCAM SA3 model 1 512 x 256 Time : 13:42	10000 fps frame : -6860 SEDATEC	1/400000 sec Date : 2009/6/23

NUMERICAL EXPERIMENT SCHEME

streamer

keeping the light

Magnetohydrodynamics equations (MHD)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \{\rho \mathbf{v}\} = 0$$

$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot \{\rho \mathbf{v} \otimes \mathbf{v}\} = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{j} \times \mathbf{B}$$

$$\frac{\partial (\rho H)}{\partial t} + \nabla \cdot \{\rho H \mathbf{v} - \lambda \nabla T\} = \frac{\partial p}{\partial t} + \nabla \cdot (\mathbf{T} \cdot \mathbf{v}) + \mathbf{j} \cdot \mathbf{E} - \nabla \cdot \mathbf{F}$$

$$\mathbf{j} = \sigma (\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$$

$$\partial_t \mathbf{B} + \nabla \times \mathbf{E} = 0$$

Material properties

$\sigma(p,T)$

Electrodynamics

Radiation transport

SIMULATION RESULTS

Fast-imaging record of plasma jet

Streamer[®]

SIMULATION RESULTS

SIMULATION RESULTS: PRESSURE

Streamer®

SIMULATION RESULTS: DENSITY

SIMULATION RESULTS: TEMPERATURE

SIMULATION RESULTS: VELOCITY

streamer®

keeping the light

SIMULATION RESULTS

Investigation of impulse arc quenching in multi-chamber systems.

streamer®

SIMULATION RESULTS

Type #1 is better than Type #2

CONCLUSIONS:

- Predictions of certain type chamber performance are in qualitative agreement with experimental knowledge
- Numerical simulation is a promising design tool for future lightning protection devices

Thank you for your attention!