

Sicherheit in Technik und Chemie



19.10.2017

## TRANSIENT PROCESS SIMULATION OF HEAT TRANSFER IN LASER BEAM WELDING WITH AN EQUIVALENT HEAT SOURCE

<u>A. Artinov</u>, M. Bachmann, M. Rethmeier BAM, Federal Institute for Material Research and Testing, Berlin

## **Overview**

1. Introduction

- 2. Numerical Modeling & Results
  - CFD
  - Heat Transfer
- 3. Experimental Observation
- 4. Conclusions





# Temperature field calculation as a part of the welding simulation



according to Radaj, D: Schweißprozeßsimulation. DVS-Verlag, Düsseldorf, 1999

COMSOL Conference Rotterdam 2017 Antoni Artinov



# **Calculation methods for the transient temperature field**



#### Energy input by a heat source model

Calibration of the heat source parameters



# **Calculation methods for the transient temperature field**



#### Self-consistent models: multiphysics simulation

Consideration of all important physical effects for the heat transfer

Optics

Thermal conduction



Gaied et al., Comsol Conference 2015.



Pang et al., J. Phys. D: Apply. Phys. 44, 2010

#### Aim: minimization of the calculation time (days/weeks)

Convection

## Approach



 Calculation of the local, stationary temperature and velocity fields

 Definition of an equivalent heat source through the isosurface of the melting temperature

 Solve the 3D heat equation considering the calculated equivalent heat source



# **Numerical modeling**



## **Computational domains/meshes/solvers**

- Tetrahedral and triangular elements
- Moving mesh
- Pointwise constraints
- CFD ca. 1.5 x 10<sup>6</sup> elements
- Heat transfer ca. 9 x 10<sup>4</sup> elements
- Remeshing ca. 10<sup>5</sup> elements
- Direct solver PARDISO
- Iterative solver Multigrid



# **Numerical modeling**



#### **Material model**

- Low alloyed steel S355J2G3
- Phase-specific data (ferrite & austenite)
- Constant density through the Boussinesq approximation
- Latent heat considered by the apparent heat capacity method







## Assumptions and boundary conditions

- Steady-state approach
- Fixed geometry of the free surfaces and the keyhole
- Heating due to laser-induced plasma neglected









#### Strong influence of the fluid flow on the weld pool geometry







#### Approximation of the equivalent heat source

## **Heat transfer**



### Assumptions and boundary conditions

- Heat transfer coefficient (air): 15 W/m<sup>2</sup>K
- No heat radiation



#### Mesh deformation only within the deforming domain

## Heat transfer Moving mesh



welding direction

Time=0.1 Surface: Temperature (K) Contour: Temperature (K)

#### Computing time < 30 min.







#### Complete transient 3D computation of the temperature field

## **Heat transfer**



#### **Prescription of the nodes temperature**



## **Experimental Observation**

## **Experimental setup**

- Temperature measurements with thermocouple elements type K
- Parameters:
  - Material low alloyed steel S355J2G3
  - Plate thickness 15 mm



- Laser power 18 kW
- Welding speed 2 m/min





## Results



### **Comparison between experiment and simulation**



Good agreement between simulation and measurements

# **Conclusions** Outlook



- Combination of advantages of the known modeling methods
- Considered effects of temperature-dependent surface tension, latent heat and free convection
- Reduced number of fitting parameters Keyhole radii
- Reduced computing time < 24 hours incl. calibration effort</li>
- Good correlation between the numerically calculated and the experimentally observed results
- Investigation of the coupling of process and structural simulation through the calculated equivalent heat source







# Thank you for your attention.

COMSOL Conference Rotterdam 2017 Antoni Artinov