

Simulating the effect of groundwater flow and heterogeneity on Borehole Thermal Energy Storage (BTES)

Mathias POSSEMIERS, Lotte DE HENAU & Jos VAN STEENWINKEL

AGT – Advanced Groundwater Techniques <u>www.agt.be</u>

Adviesbureau Grondwater Technieken

BTES

- Borehole Thermal Energy Storage (BTES), closed loop ground source heat pumps (GSHP) or closed systems
- Thermal energy is stored and recovered with a closed hydraulic circuit consisting of one or more boreholes with vertical heat exchangers.
- Heat exchangers consist of plastic tubes wherein a fluid (commonly a water-glycol mixture) is circulated and absorbs the thermal energy from the ground.

(SmartGeotherm, 2015)

Problem

- Commonly, the number of heat exchangers is calculated using average values for the thermal properties of the subsurface
- Groundwater flow is generally not considered
- Subsurface heterogeneity and groundwater flow, however, can have an important impact on the number of required heat exchangers and the associated cost of a BTES system
- In this project the effect of both groundwater flow and heterogeneity on BTES systems is evaluated.

Case

- Antwerp (Belgium)
- Hospital and public housing project

Site

- Groundwater flow
 - WNW
 - 1.5 ‰

Simulating the effect of groundwater flow and heterogeneity on Borehole Thermal Energy Storage (BTES)

Lithologie Fijn zand - Zandige deklagen (HCOV 0151) Matig grof zand - Pleistoceen en Plioceen Aquifer (HCOV 0230) Matig grof zand - Zand van Diest (HCOV 0252) Fijn zand - Zand van Berchem (HCOV 0254) Simulating the effect of groundwater flow and heterogeneity on Borehole Thermal Energy Storage (BTES) Klei - Boom Aquitard (HCOV 0300) Fijn zand - Ruisbroek-Berg Aquifer (HCOV 0430) Zandige klei - Tongeren Aquitard (HCOV 0440) Fijn zand - Onder-Oligoceen Aquifersysteem (HCOV 0450) Fijn zand en klei - Bartoon Aquitardsysteem (HCOV 0500) Fijn zand - Wemmel-Lede Aquifer (HCOV 0610) Fijn zand - Zand van Vlierzele en/of Aalterbrugge (HCOV 0640) 6 Zandige klei - Paniseliaan Aquitard (HCOV 0700) Kleiig, zeer fijn zand - Ieperiaan Aquifer (HCOV 0800)

Silt - Silt van Kortemark (HCOV 0910)

Klei - Afzettingen van Kortrijk (HCOV 0920)

Site

- Geology
 - Sand
 - Clay
- BTES depth criterion = 150 m

m-mv/mTAW

0

-20

-40

-60

-80

-100

-120

-140

-160

-180

-200

-220

0

20-

40-

60-

80

100

120-

140

160-

180-

200-

220-

240

KWO

BEO

KWO

Energy Demand

•	Scenario 1	Heating demand (MWh/year)	Peak load (kw)
	Buildings	362	55
	Subsurface (COP _{HP} 4.5)	282	43

•	Scenario 2	Heating demand (MWh/year)	Peak load (kw)
	Buildings	3372	483
	Subsurface (COP _{HP} 4.5)	2623	376

• Load duration curves not available

- COMSOL Multiphysics[®]
 - Groundwater flow (Subsurface Flow Module)
 - Heat transport in the subsurface (Heat Transfer Module)
 - The subsurface was divided into different geological layers (aquifers and aquitards), each with different hydrogeological and thermal parameters. To simulate the effect of groundwater flow, a groundwater gradient was imposed.

- Horizontal extensions
 - Scenario 1: 100 x 100 m
 - Scenario 2: 110 x 120 m
- Vertical extensions

Model- laag	Top (mTAW)	Basis (mTAW)	Top (m-mv)	Basis (m-mv)	Dikte (m)	Hydrogeologie	K _h (m/dag)	K _v (m/dag)
1	7.9	-30.8	0	38.7	38.7	Zandige deklagen (HCOV 0151) Pleistoceen en Plioceen Aquifer (HCOV 0230) Zand van Diest (HCOV 0252) Zand van Berchem (HCOV 0254)	10	3.33
2	-30.8	-92.2	38.7	100.1	61.4	Boom Aquitard (HCOV 0300)	0.001	0.0003
4	-92.2	-117.4	100.1	125.3	25.2	Ruisbroek-Berg Aquifer (HCOV0430) Tongeren Aquitard (HCOV 0440) Onder-Oligoceen Aquifersysteem (HCOV 0450)	1	0.33
7	-117.4	-157.3	125.3	165.2	39.9	Bartoon Aquitardsysteem (HCOV 0500)	0.010	0.0033

🖄 Geometry

Materials

Material	Thermal conductivity (W/mK)	Heat capacity (J/kgK)	Density (kg/m³)
Sand	2.90	920	2650
Clay	2.00	1090	2650
Water	0.58	4186	1000

Darcy's Law

- Effective porosity
 - Sand: 0.15
 - Clay: 0.01
- Hydraulic conductivity (K_h, K_v)
- Hydraulic head > Groundwater gradient
 - Up- and downstream end

Heat Transfer in Porous Media

- Initial temperature: 12°C
- Inflow Outflow
- Effective porosity: 0.35
- Convective Heat Flux
 - Heat transfer coefficient: 1/R_b
 - R_b: Borehole resistance = 0.1 mK/W x borehole radius (65 mm)
 - External temperature: Piecewise function
 - Heating (6 months): 0°C
 - Cooling (6 months): 15°C

Boundary layers Mesh 風 Free triangular + swept Free tetrahedral

👒 Study

- Study 1: Stationary > Darcy's Law
- Study 2: Time Dependent > Heat Transfer in Porous Media

- Scenario 1
 - 55 kW
 - 362 MWh
 - 15 vertical heat exchangers
 - U-shaped configuration
 - Influence of groundwater flow
 >> in aquifers than aquitards

dwater flow and heterogeneity on (BTES) Chermal Energy Storage (groun Borehole 1 Simulating the effe 16

• Scenario 1

Evolution of the average, minimum and maximum temperature on the borehole wall

• Scenario 1

Evolution of the available power

• Scenario 1

Evolution of the maximal energy production

- Scenario 2
 - 483 kW
 - 3372 MWh
 - 143 vertical heat exchangers
 - Rectangle 11 x 13
 - Influence of groundwater flow
 >> in aquifers than aquitards

Temperature distribution (°C) at the end of the cooling cycle after 20 years

12

10

8

6

2

14

13

12

11

10

9

• Scenario 2

Evolution of the average, minimum and maximum temperature on the borehole wall

• Scenario 2

Evolution of the available power

• Scenario 2

Evolution of the maximal energy production

Conclusion

- Clear effect of both heterogeneity and groundwater flow on the temperature distribution around the borehole heat exchangers
- In the aquifers, the effect of the groundwater flow is much larger than in the aquitards.
- Particularly in the case of the presence of aquifers, it is important to consider groundwater flow and subsurface heterogeneity for dimensioning a BTES system.

Future

• Modeling interaction between BTES and ATES

Simulating the effect of groundwater flow and heterogeneity on Borehole Thermal Energy Storage (BTES)

Mathias POSSEMIERS, Lotte DE HENAU & Jos VAN STEENWINKEL

AGT – Advanced Groundwater Techniques <u>www.agt.be</u>

Adviesbureau Grondwater Technieken