Modal Analysis of Rotating Machines C. Frankrone, L. Fromme Department of Engineering Sciences and Mathematics, University of Applied Sciences Bielefeld, Bielefeld, Germany

Introduction: Machines with rotating components are prone to vibrations because an imbalance of the rotor would always act as a harmonic excitation force. Aim of this work is to investigate the

Aim of this work is to investigate the vibrating behavior of a machinery frame with major respect to coupled elements in the lower frequency band. Therefore an analytic attempt is compared with COMSOL Multiphysics® results. After an successful verification of the numerical model specified damper can be evaluated for rotating machines.

FH Bielefeld

University of

Applied Sciences

Figure 1. Analytical abstraction of the machine model

Figure 2. COMSOL® model of the abstract machine. **Results**: The comparison with analytical and numerical results show a good match with a maximum deviation for $\Delta x < 0.2 \%$ (Figure 3). With further extensions for the simple model – with more DoF and additional damping – it can be shown that the described approach corresponds with experimental test results.

without damping.

Computational Methods: A first numerical approach evaluates simple substitution machine models with two DoF (according to Figure 1). $\ddot{x_2} + \omega_2^2 x_2 + k_2 x_1 = 0$ $\ddot{x_1} + \omega_1^2 x_1 + k_1 x_2 = \frac{1}{m} F_u(t)$

The vibration can be analytical expressed by a deflection in the vertical direction x for each machine part, solving upper coupled DE's: \hat{x}

$$\hat{x}_{1} = \frac{r_{u}}{m_{1} \cdot \left[(\omega_{1}^{2} - \Omega^{2})(\omega_{2}^{2} - \Omega^{2}) - c_{1}c_{2} \right]}$$
$$\hat{x}_{2} = \frac{-c_{2}\hat{F}_{u}}{m_{1} \cdot \left[(\omega_{1}^{2} - \Omega^{2})(\omega_{2}^{2} - \Omega^{2}) - c_{1}c_{2} \right]}$$

Figure 3. Excitation of 2 DoF System without damping. **Conclusions**: The current study is an successful approach to a universal model for rotating machines e.g. used in separation processes. Deviations of compared experimental data are noticed for vibrations occurring at lower eigenfrequencies in range of 3 - 10 Hz (180 – 600 *RPM*) and in the mag-

The numerical model is further extended with an additional damping term to simulate a realistic vibrational absorption.

Like the reaction forces of the spring foundation – witch are coupling the frame – the forces for the console are implemented similar with a boundary force and a general extrusion coupling operator. nitude of deflection for vibrational peaks. These deviations are assumed to be found in a more sufficient description of dampers.

References:

- 1. H. Anlauf, "Recent developments in centrifuge technology," Separation and Purification Technology, vol. 58, no. 2, pp. 242-246, 15 12 2007.
- 2. H. Dresig and F. Holzweißig, *Maschinendynamik*, Berlin Heidelberg: Springer-Verlag, 2006
- 3. W. H. Stahl, Band II, Fest-Flüssig-Trennung Industrie-Zentrifugen Maschinen- & Verfahrenstechnik, vol. II, Männedorf: DrM Press, 2004.

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam