Introduction: Laser-induced forward transfer (LIFT) is a non-contact direct-write technique for high-resolution patterns in which a blister drives the flow of the surround fluid, transferring the fluid free of damage [1].

Computational Methods: The model is implemented as a Two-Phase Flow, Level Set interface, with a moving wall. Its velocity is set through experimental data and a Moving Mesh node. The acceptor is also included to study their influence.

\[
\rho \frac{\partial u}{\partial t} + \rho (u \cdot \nabla) u = \nabla \cdot [-pI + \mu(\nabla u + \nabla u^T)] + F_g + F_{st} + F_{ext} + F
\]

\[
\nabla \cdot u = 0
\]

\[
\frac{\partial \phi}{\partial t} + u \cdot \nabla \phi = \gamma \nabla \cdot \left(\varepsilon \frac{\nabla \phi - \phi (1-\phi) \nabla \phi}{|\nabla \phi|} \right)
\]

Results: The validation of the model has been done using the pump-probe imaging technique, the temporal resolution of each frame is given by the pulse duration of the probe source, plasma flash lamps (25 ns) [2].

Conclusions: The printability map of the process is drawn using dimensionless numbers regarding different regimes.

References:

Acknowledgments: Work supported by EUROPEAN COMMISSION APPOLO FP7-2013-NMP-ICT-FOF. 609355 and Spanish MINECO projects: SIMLASPV-MET (ENE2014-58454-R), HELLO (ENE2013-48629-C4-3-R) and CHENOC (ENE2016-78933-C4-4-R)