Analysis of Transient Electromagnetic Dipole

J.S. Crompton, K.C. Koppenhoefer, S.Y. Yushanov
AltaSim Technologies, LLC

COMSOL Conference
8-10 October, 2009
Transient Electromagnetics - Outline

• Applications
 – Geological mapping
 – Human tissue interaction

• Analytical approach
 – Continuous
 – Transient

• Results
Transient Electromagnetics

- Geological mapping
 - Ocean floor
 - Subterranean
 - Minerals, Water
- Pulse characteristics
 - 1-20ms on/off
 - 1-30µs ramp
- Ground penetration
 - Several hundred meters
Transient Electromagnetics

- Environment emissions
- Mobile communications
 - Human body interaction
 - Continuous vs transient/pulse exposure
Analytical approach

- Continuous field
 - Maxwell equations

- Transient field
 - Conductive dissipating medium
 - Shape and characteristics modified
 - Near, Intermediate and Far fields important
 - Shift from excitation pulse + near field response to spatial and time derivatives
Analytical approach

- Pulse with non-zero rise and decay time:

\[
I(t) = \frac{1}{2t_1} \left\{ \left(1 - e^{-\omega_p t}\right)H(t) - \left[1 - e^{-\omega_p (t-2t_1)}\right]H(t - 2t_1) \right\}
\]

Rise/Decay time, \(\tau_p = \frac{1}{\omega_p} \)
Analytical approach

- Electric field perpendicular to dipole axis:

\[
E_x(\rho, t) = \frac{\mu_0 a I(t) ds}{16\pi t_1} \begin{cases}
0, & t = 0 \\
E(\rho, t), & 0 < t < 2t_1 \\
E(\rho, t) - E(\rho, t - 2t_1), & t > 2t_1
\end{cases}
\]

Analytical approach

- Maxwell’s equations magnetic vector potential:

\[\mu \varepsilon \frac{\partial^2 A}{\partial t^2} + \mu \sigma \frac{\partial A}{\partial t} + \nabla \times (\nabla \times A) = 0 \]

- COMSOL Multiphysics RF module
- Optimized solver settings
Analytical validation

- Short pulse with non-zero rise/decay:

Current pulse

Electric field

Electric field lasts longer than input pulse
Electric field development

- Short pulse non zero rise/decay

 transient dominant
Analytical validation

- Long pulse with non-zero rise/decay:

Current pulse

Electric field

Electric field similar in length to input pulse
Electric field development

- Long pulse non zero rise/decay

\[\log_{10}|E_x| \quad t = 2 \text{ ms} \]

Transient dominant

\[\log_{10}|E_x| \quad t = 22 \text{ ms} \]

Quasi-static dominant
Summary

• Method to analyze transient pulse applied to an electromagnetic dipole has implemented

• Resulting field is complex and consists of 2 terms:
 – Response to rectangular pulse
 – Response to step discontinuity