

REET: Renewable Energies and Environmental Technologies

Helical Coil Flow: a Case Study

Marco Cozzini

Fondazione Bruno Kessler (FBK) Trento, Italy

Comsol Conference 2009

Outline

- Motivations
- Fluid dynamics background
- Geometry details
- Model implementation
- Toroidal path
- Helical path
- Concluding remarks

The REET Unit at FBK

REET: Renewable Energies and Environmental Technologies

Topics:

- Solar thermal energy
- Non ionizing radiations
- Biomass
- Geothermal energy

+

Applied research in collaboration with local companies

Methods:

- Experimental activity
- Numerical simulations
- Partner collaborations

Crucial aspects:

- Vector fluid
- Piping system
- Heat source
- Flow regime

In general: non-isothermal flow

Here: fluid dynamics *independent* of heat transfer

Water, small temperature variation → Purely incompressible flow

Flow in Curved Pipes

Flow in curved circular pipes: Dean (1927)

- Small velocity (laminar regime)
- Negligible torsion
- Small curvature ($\delta \ll 1$)

Dean number

$$De = Re\sqrt{\delta}$$

$$\delta = a / R$$

Investigations found in literature:

- Cross section (circle, square, ...)
- Pipe path (torus, helix, ...)
- Regime (laminar, turbulent, ...)

Flow in Curved Pipes

Pipe curvature gives rise to *secondary flow* (flow perpendicular to the main flow direction).

Typical flow pattern at small Dean numbers:

• Main flow: slightly modified with respect to straight tubes due to *centrifugal force*

• Secondary flow: recirculation structures (Dean flow)

Enhanced heat transfer efficiency due to transverse convective flux

Helical Coil Flow

Helical channel with non trivial cross section Large number of turns \rightarrow infinite coil approximation

Translational invariance with respect to curvilinear coordinates (Frenet frame) \rightarrow possible dimensional reduction (3D \rightarrow 2D)

Here: 3D finite geometry with *periodic-like* boundary conditions

Helical path: non negligible role of *torsion* Put in evidence by comparison with toroidal path

Frenet Frame

- t, tangent unit vector:
 tangent to curvilinear path
- **n**, normal unit vector: pointing towards curvature radius
- **b**, binormal unit vector: constant in the absence of torsion

Helical Path

Channel Cross Section

Cross section in the plane orthogonal to the tangent vector **t**

Same cross section for helical and toroidal geometries

$$Re = \frac{\rho v D_{h}}{\eta}$$

$$\begin{cases} \rho = density \\ \eta = dynamic viscosity \\ v = average velocity \\ D_{h} = hydraulic diameter \end{cases}$$

$$D_{\rm h} = 4 \frac{A_{\rm ch}}{P_{\rm ch}} \approx 2.1 \,\rm{mm}$$

$$\begin{cases} A_{\rm ch} = \rm{channel\,cross\,section\,area} \\ P_{\rm ch} = \rm{channel\,cross\,section\,perimeter} \end{cases}$$

Navier-Stokes equations, incompressible fluid (water).

Solver. PARDISO, highly non-linear problem, manual tuning of damping parameters.

Mesh, element order. Unstructured tetrahedral mesh elements, swept prism mesh elements, Lagrange – P_2P_1 or Lagrange – P_3P_2 .

Artificial diffusion: crosswind diffusion (0.1), isotropic diffusion occasionally used for intermediate simulations.

Boundary conditions. Walls: no slip b.c.'s. Inlet and outlet: no viscous stress + periodic b.c.'s + pressure at a point.

Check symmetry: full cross section Check curvature: 90° arc Meshes: 4x5 (half section) Element order: P_3P_2 Re = 220, De = 90, Dp = 40 Pa / 360°

Good agreement with 10° half section geometry for similar dof density

v_t [m/s] Max: 0.0267 0.025 0.02 0.015 0.01 0.005 0.005 0 Min: 0

Helix

Arc-length: 10° Mesh: 10x12 (half section) Element order: P_3P_2 Re = 453, De = 181, Dp = 100 Pa / 360° B.c.'S: $v(r_{out}) = R_z(\pi/18) v(r_{in})$, $p(r_{out}) = p(r_{in}) - \Delta p$,

No symmetry, additional Dean structure

Arc-length: 360° Mesh: swept, prism elements Element order: P_2P_1 Dp = 100, ..., 1000 Pa / 360°

Basically linear velocity - pressure relation, laminar regime (similar results are obtained for the toroidal geometry)

Conclusions

Periodic boundary conditions:

Convergence issues with rispect to standard inlet-outlet b.c.'s

Mesh requirements:

- Identical meshes for coupled boundaries
- High quality elements (in particular close to periodic boundaries)
- \rightarrow unstructured meshes and higher order elements

Successful observation of non trivial secondary flow structures with full 3D Navier-Stokes simulations

Toroidal path: velocity-pressure relation, 0.5 laminar regime

Technical Info

Machine. Processor: double quad-core, 2GHz. RAM: 16 GB.

Number of degrees of freedom.

Helix:

- 10° geometry: 360000 dof
- single turn geometry: 250000 dof *Torus*:
- 10° half section geometry: 42000 dof (9x10), 240000 dof (16x18)
- 90° full section geometry: 220000 dof