Presented at the COMSOL Conference 2009 Milan

A Finite Element Model for The Axon of Nervous Cells

S. Elia, P. Lamberti, and V. Tucci, Dept. of Electrical and Information Engineering, University of Salerno, via Ponte don Melillo, Fisciano, (SA), Italy, <u>selia@unisa.it</u>

Outline

- Introduction
- Adopted FEM models
- Results
 - Differences between the two models
 - Temperature Dependence
 - Propagation Effect
- Conclusions and Future Works

Introduction

Transmission of signals in the nervous system: fast <u>fluctuations of the electric potential</u> across neurons external "coating": its membrane.

The axon (myelinated or not):

- long cylindrical structure
- surrounded by a complex structured membrane
- physical support for nervous pulses propagation

Circuit parameter equivalent model of the <u>axon membrane</u> (Hodgkin-Huxley Model):

a capacitance in parallel with several ionic gating channels, whose equivalent conductance depends on Vm (the voltage across the membrane itself).

Intracellular medium

EQS Implementation of a FEM Model (A) for an Axon Segment

A Transient Analysis of a Quasi Static Electric formulation for Maxwell Equations is adopted to define the current continuity equation on the various domains.

EM Settings Over the Domains

All media (but membrane) are linear, homogeneous, isotropic.

Membrane domain is modelled performing a translation of Hodgkin Huxley (HH) lumpedcircuit quantities into parameters adapt to a field solution study:

— σm

(highly non-linearly depending on voltage across membrane)

— *E*m

(derived from the capacitance value measured by H&H)

- Jext

(an external impressed current density, also depending on voltage across membrane).

(Dependent Variable: Electric Potential V)

$$\nabla \cdot \frac{\partial (\varepsilon_i \nabla V)}{\partial t} + \nabla \cdot (\sigma_i \nabla V - \overline{J}_{ext}) = 0$$

$$i \in \{D_{ax}, D_m, D_{ext}\}$$

$$\overline{J}_{ext} = \begin{cases} Je(V_m) \cdot \hat{r} & over \ D_m \\ 0 & elsewhere \end{cases}$$

EQS Implementation of a FEM Model (A) for an Axon Segment

EQS Implementation of a FEM Model (A) for an Axon Segment

Thin Layer Approximated Model (B)

Alternative model, performing a **thin layer approximation** for the membrane.

Membrane is substitued by a discontinuity surface on which an equivalent current density J_{eq} is imposed to account membrane electrophysiological effects.

HH parameters defined only on membrane boundary.

Two Different EQS Packets(Dep. vars: V1, V2)

$$J_{eq} = \sigma_m \frac{(V_2 - V_1)}{d_m} + J_{ext} + \frac{\varepsilon_m \varepsilon_0}{d_m} \frac{\partial (V_2 - V_1)}{\partial t}$$

PDE Packet (weak form for boundaries)

Hps:

Membrane conductivity is lower than those of the other two;
Lateral boundaries are insulated (null net flux);
Current density φ and z components are negligible with respect to transversal one.

COMSOL Multiphysics Reference Manual, *Thin Film Resistance* application example

Comparison between the two models

PARAMETER / MODEL	Α	В
Degrees of freedom	7086	685
Number of boundary sides	220	45
Number of elements	2378	300
Minimum quality level	0.5867	0.5666

Considerable advantage in terms of calculus time and memory usage.

0		dm	dM	Dm	DM
	Model A	83.64	185.59	119.31	183.71
OIIIIuiai	Model B	19.79	48.96	26.89	42.70

Comparison between the two models

Action Potentials under Four Different Current Density Stimuli

Temperature Dependence

Burst of faster APs.

$$\frac{dx}{dt} = \left[\alpha_x(1-x) - \beta_x x\right]$$

with $x \in \{m, n, h\}$
and $\tau_x = \frac{1}{\alpha_x + \beta_x}$
T(T=6.3°C)

$$\frac{dx}{dt} = \left[\alpha_x(1-x) - \beta_x x\right] \cdot 3^{\frac{T-6.3}{10}}$$

$$\frac{dx}{dt} = \left[\alpha'_{x}\left(1-x\right) - \beta'_{x}x\right]$$

Propagation Effect

Conclusions and Future Works

The described FEM models allow:

- to simulate the electrophysiological behaviour of a portion of nervous cell axon (under-threshold and active dynamic behaviour),
- to reproduce accurately action potentials with an efficient approach,
- to simulate a whole non-myelinated fibre and to introduce soma, dendrites, etc...

Work in progress: neurostimulation with nanoelectrodes. Thank you for your attention!

