

Presented at the COMSOL Conference 2009 Milan

#### <sup>°</sup> Andrea Manconi *manconi.a@irea.cnr.it*

# Simulated Annealing and Genetic Algorithm Optimization using COMSOL Multiphysics: Applications to the Analysis of Ground Deformation in Active Volcanic Areas



# Outline

- $\rightarrow$  Intro: Volcano geodesy
- $\rightarrow$  SA and GA optimization within COMSOL
- $\rightarrow$  Application to Tenerife, Canary Islands
- $\rightarrow$  Summary and Future work







# Optimization with gradient-based algorithms



Move down-hill  $\rightarrow$  might be "trapped" in local minima

Solution depends on the initial guess  $\rightarrow$  a priori constraints!



# **Optimization with Monte Carlo algorithms**



Randomness  $\rightarrow$  allows "escaping" from local minima

Simulated annealing and Genetic Algorithm belong to this class



### Simulated Annealing (Kirkpatrick et al., 1983)

Based on analogy with annealing in metallurgy

Lowering Temp  $\rightarrow$  solutions with lower cost are favored



# Genetic Algorithm (Holland, 1975)

Based on analogy with biological evolution

Best-fit model  $\rightarrow$  selection after max generations



# Standard forward models in Volcano Geodesy



- → Simplified geometry
- → Homogeneous half-space
- $\rightarrow$  Elastic material properties

HOWEVER @ VOLCANOES...

- ...Complex source's shapes
- ...Heterogeneities

...Time dependent material properties



# FEM in Volcano Geodesy



#### Advantages:

- $\rightarrow$  Complex geometries
- → Material heterogeneities
- $\rightarrow$  "Multi-physics" simulation



#### Disadvantages:

- $\rightarrow$  Computationally expansive
- $\rightarrow$  Poor constraints for

subsurface properties



# Application: Tenerife, Canary Islands

Fernandez et al., 2008



Surface deformation from space geodesy (1992-2006)

Interpretation: gravitational loading due to denser core



# A priori information: Density structure



Gottsmann et al., 2008

Micro-gravity measurements Constrain the inner structure

We can use this info to set up a FE model and optimize for the "best" distribution of viscosities explaining the observed deformation



# COMSOL: Model setup



Fluid dynamics module Incompressible Navier-Stokes

Density is a function rho(r,z), constrained by the microgravity measurements

Optimization of viscosity eta(r,z) with SA and GA



### Results: Tenerife viscosity structure



Lateral heterogeneous viscosity distribution gives a better fit of the deformation data compared with homogeneous and/or layered structure!



# Summary & Future work

 $\rightarrow$  Implementation of optimization using SA and GA with COMSOL

→ Possibility to use more complex forward models allows for a more accurate analysis of deformation at volcanoes: example of Tenerife

 $\rightarrow$  Same approach might be applied for other case-studies

 $\rightarrow$  Straightforward extension to 3-D models

#### Thermal evolution of CF caldera



#### 3-D Case: Campi Flegrei caldera





3-D Seismic tomography Chiarabba et al., 2006







#### Satellite geodesy: DInSAR Scenario



Centimetric displacements can be measured in over large areas!

# Numerical inversion within FE models

