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Abstract: High intensity discharge lamps
can experience flickering and even destruction,
when operated at high frequency alternating cur-
rent. The cause of these problems has been iden-
tified as acoustic resonances inside the lamp’s
arc tube. Here, a finite element approach for the
calculation of the acoustic response function is
described. The developed model does not in-
clude the plasma dynamics.
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1 Introduction

Reduction of energy consumption is one of the
most important issues for modern societies. To-
gether with fuel efficient vehicles and energy
efficient buildings, lighting has a high energy
saving potential. To save energy in the field
of indoor lighting, Europe, Australia, and New
Zealand have all passed laws prohibiting the
sale of traditional light bulbs. High intensity
discharge (HID) lamps offer here an interest-
ing alternative as they are highly efficient light
sources. Further improvement is also deemed to
be a possibility. For outdoor lighting HID lamps
are already used to a large extent (streets, road-
ways, stadiums, etc.).

In HID lamps light is generated by a gas dis-
charge inside a confinement made from ceram-
ics or quartz called arc tube or burner. The gas
mixture inside the arc tube is usually mercury
with some additives such as metal halides (NaI,
TlI, etc.). It is heated, and therefore partially
ionized, by maintaining an electrical current be-
tween two electrodes. The ionized gas forms the
light emitting arc (Figure 1, left). Details on the
working principle of HID lamps can be found
elsewhere [1, 2, 3].

To prevent demixing of gas components in-
side the burner, the lamp is operated at alternat-

ing current. As a result of this periodic heat-
ing, an acoustic wave with the modulation fre-
quency of the power in the discharge is gener-
ated. It propagates toward the walls where it
is damped and reflected. Incident and reflected
waves interfere which leads to the development
of standing acoustic waves. At certain frequen-
cies resonances form. The standing waves inter-
act with the discharge arc [4] and are responsible
for its distortion and instability (Figure 1, right).
These take the form of flickering light, reduction
of the lamp’s lifetime or even destruction of the
lamp. In order to further improve HID lamps it
is necessary to understand and control the acous-
tic resonance phenomenon.

In this article, we derive a finite element
(FE) model that describes the generation of
acoustic resonances which are responsible for
the onset of acoustic streaming. This model does
not include the plasma dynamics, and is based
on a simplified geometry. Static temperature and
power distributions are used. In a forthcoming
article we plan to take into account plasma dy-
namics. The calculations have been performed
using COMSOL Multiphysics with the default
parameter settings [5].

2 Theory

In previous COMSOL conferences some of the
authors of this paper reported on the calculation
of the pressure inside the resonator of photoa-
coustic sensors [6, 7], see also [8, 9]. Here we
describe how an equivalent method can be ap-
plied to estimate the strength of acoustic reso-
nances inside the burner of HID lamps.

The starting point is the inhomogeneous
Helmholtz Equation for the acoustic pressure
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where γ denotes the ratio of the specific heat at
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constant pressure cp to the specific heat at con-
stant volume cV . H(~r, ω) constitutes the Fourier
transform of the power density deposited in the
gas.

Contrary to the case of the photoacoustic
sensor, the temperature T in the burner is not
constant, but space dependent. The density ρ of
the burner filling and the speed of sound c be-
come a space dependency as well. In this work
it is assumed that the relation of T and ρ is de-
scribed by the ideal gas law and c and T are re-
lated through c =

√
γRmT/M (gas constant

Rm, molar mass M ).
Loss is accounted for via loss factors. The

surface loss factor associated with the j-th
acoustical eigenfrequency ωj of the burner (vol-
ume VB) resulting from shear stress is calculated
from the surface integral
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(2)
~∇t pj denotes the component of the pressure
gradient tangential to the burner wall and the in-
tegral has to be taken over the entire surface of
the burner. Surface loss due to heat conduction
can be calculated from the similar integral
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The integrals contain the associated transport
coefficients η (coefficient of viscosity) and κ
(coefficient of heat conduction), respectively.

Equation (3) is derived under the assump-
tion that the thermal conductivity of the wall
is very large compared to the thermal conduc-
tivity of the gas. A rough estimation of the
ratio of the thermal conductivities results in
κwall/κplasma = O(50). This is considered to
be large, and therefore justifies the use of Equa-
tion (3).

The volume loss due to shear stress is de-
scribed by
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This equation is derived by following the rea-
soning of Morse and Ingard [10], Kreuzer [11]
and considering that ρc2 = const. If η were con-
stant, as is the case for photoacoustic sensors,
the above sum is reduced to a single term due to
the orthogonality of the eigenmodes pj .

In order to allow an estimation of the loss
factor, Equation (4), we describe the viscosity

as a sum of a constant and a space dependent
part:

η(~r) = η̄ + η̂(~r). (5)

η̄ is chosen to be the mean value of the minimum
and maximum viscosity inside the burner. This
leads to

L
(vη)
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4
3

η̄

ρc2
ωj + corrections. (6)

For volume loss due to thermal conduction
we proceed in the same way. Splitting the coef-
ficient of thermal conduction

κ(~r) = κ̄+ κ̂(~r) (7)

leads to

L
(vκ)
j =

(γ − 1)κ̄
cpρc

2
ωj + corrections. (8)

In order to check if the correction terms in
Equations (6) and (8) are negligible, we make
the following estimation: ignoring these correc-
tions and using the values of Table 1 the two
volume loss factors can be calculated. In this
approximation volume loss scales linearly with
frequency:

L
(v)
j = L

(vκ)
j + L

(vκ)
j ∼ ωj . (9)

Critical damping corresponds to L(v)
j = 2 and,

therefore, occurs at a frequency fcrit ≈ 1 GHz.
It is very unlikely that the correction terms
would change fcrit by orders of magnitude and it
is reasonable to disregard the corrections in the
volume loss formulas for the frequency range
considered in this paper.

The solution of the Helmholtz equation can
be expressed as a superposition of the normal-
ized eigenmodes

p(~r, ω) =
∑

j

Aj(ω)pj(~r), (10)

where the contribution of a certain mode is
determined by the frequency dependent am-
plitudes Aj(ω). These amplitudes exhibit a
Lorentzian profile according to

Aj(ω) = i
Ajω

ω2 − ω2
j + iωωjLj

. (11)

The excitation amplitude Aj corresponding to
the j-th mode is calculated from a scalar prod-
uct of the mode and the power density profile

Aj =
(γ − 1)
VB

∫
VB

p∗jH dV . (12)

Details about the theoretical framework de-
scribed in this section can be found elsewhere
[12].



3 Results

Using the equations presented in the previous
section, we performed an FE calculation of the
response function of the acoustic pressure in-
side the burner of an HID lamp. The burner is
assumed to be of cylinder shape (radius R =
3.425 mm, length L = 7 mm). The fre-
quency range from 10 kHz to 1 MHz is cov-
ered in 50 Hz-steps. In order to restrict mem-
ory requirements and CPU time, the simulation
has been performed as a two-dimensional ax-
isymmetric model without nontrivial azimuthal
modes. Due to the large frequencies involved it
is necessary to use about 400 modes and a very
fine FE mesh.

The following assumptions have been made
(all physical constants are collected in Table 1):
The power density is assumed to be of Gaussian
profile

H(~r) = H0 exp
(
−2
(r⊥
w

)2
)
, (13)

where r⊥ is the distance from the burner axis
and w is the radius of the power profile. The
coefficient H0 has been chosen arbitrarily since
its determination requires the modeling of the
plasma dynamics. Consequently, all following
pressure results are relative.

The temperature distribution inside the
burner is described by

T (r⊥) = Ta − (Ta − Tw)
(r⊥
R

)2

. (14)

For the description of the temperature depen-
dency of the viscosity we use Sutherland’s law
[13]
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(
T
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)3/2
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. (15)

and for the coefficient of thermal conduction we
use [14]

κ = κ0 exp
(
T

T1

+ arctan
(
T − T2

T3

)
− 1.3

)
.

(16)
In order to quantify the acoustic resonance

phenomenon, the acoustic pressure as a func-
tion of the driving frequency (response function)
has been calculated. The shape of this response
function depends on the location for which it
is determined. To judge the overall response,
two extreme locations inside the burner have
been chosen (center of burner, edge of burner).
The resulting response function for these loca-
tions is depicted in Figures 2 and 3. Figure 2

also shows the excitation amplitude according
to Equation (12) and the total loss factor. It be-
comes evident from this figure that a large ex-
citation amplitude is a prerequisite for a strong
resonance. It has been checked that large excita-
tion amplitudes appear for purely radial modes
only. Figure 4 (left) shows the power density
of the discharge arc together with two different
radial modes (middle part and right). It is easy
to understand that the overlap integral of Equa-
tion (12) for the mode depicted in the middle
of Figure 4 and the power density is large. On
the other hand, the overlap integral of the power
density and the highly excited radial mode de-
picted on the right is small due to cancellations
of positive and negative contributions. It is im-
portant to be aware of the fact that the figures
show the absolute value of the pressure |p| and
that neighboring antinodes correspond to differ-
ent signs of the pressure. The decrease of the ex-
citation amplitude and the increase of loss with
frequency explain the decrease in the resonance
amplitudes with increasing frequency.

Therefore, the symmetries of burner geom-
etry and power density profile allow for the ef-
ficient excitation of radial modes. Longitudinal
modes, on the other hand, cannot be excited un-
der the considered conditions, since the overlap
integral (12) of power density and longitudinal
modes is exactly zero. Strictly speaking, pure
longitudinal modes do not even exist in the arc
tube of an HID lamp, due to the space depen-
dency of the speed of sound. As a result nodes
and antinodes are no longer plane but curved
(see Figure 5, left). The excitation amplitudes
of the nonradial modes of Figure 5 are small but
not identical to zero.

As mentioned above, in this investigation
only trivial azimuthal modes are considered.
Still, it is worthwhile to mention that nontrivial
azimuthal modes cannot be excited due to the
symmetry of the model.

4 Conclusions

The aim of our work was to calculate the acous-
tical response function inside the arc tube of an
HID lamp, starting from a simplified description
of the plasma. It has been found that the cylinder
symmetry of the geometry, and of all physical
coefficient profiles, results in resonances, which
are connected to purely radial modes. Despite
the simplicity of the model, first experimental
results show good agreement with the calculated
amplitude.



The model described in this article is in-
tended to serve as a starting point for a
more comprehensive model, which includes the
plasma dynamics. Also, a realistic descrip-
tion of HID lamps requires a three-dimensional
model. Such a model would allow optimization
of the lamps with regard the acoustic resonance
problem.
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specific heat capacity at constant pressure cp = 114 J/kg K
adiabatic exponent γ = 1.66667
pressure of mercury PHg = 18 hPa
temperatures:

of burner wall Tw = 1300 K
on axis Ta = 5000 K
Sutherland’s constant TS = 850 K

T0 = 273 K
T1 = 4000 K
T2 = 5200 K
T3 = 330 K

viscosities:
η0 = 2.25 · 10−5 Pa s
η̄ = 2.3 · 10−4 Pa s

coefficients of heat conduction:
κ0 = 0.375 W/m K
κ̄ = 0.12 W/m K

molar mass of mercury MHg = 200 kg/kmol
radius of discharge arc w = 1 mm

Tab. 1: Physical quantities used in this article.

Fig. 1: Structure of HID lamp (left) and by acoustic resonances disturbed arc (right).



Fig. 2: Response function in arbitrary units at two different locations inside the arc tube (top), logarithm
of excitation amplitudes according to Equation (12) in arbitrary units (middle) and total loss factor
times 103 (bottom) as function of the frequency in Hz.



Fig. 3: Logarithm of response function in arbitrary units at two different locations inside the arc tube as
function of the frequency in Hz. The dashed line depicts the pressure at the center and the full
line at an outer corner of the burner (see Figure 4).

Fig. 4: Left: Power density according to Equation (13) for w = 1 mm. The arrows indicate the locations
where the response functions have been calculated. Middle and right: Absolute value of acoustic
pressure |p| for two radial modes (eigenfrequencies 88.33 kHz and 1014 kHz, respectively). Blue
indicates nodes whereas red indicates antinodes. The left edge is the location of the cylinder axis.

Fig. 5: Absolute value of acoustic pressure |p| for some modes (eigenfrequencies 33.11 kHz, 64.71 kHz
and 866.5 kHz respectively). Blue indicates nodes whereas red indicates antinodes. The left edge
is the location of the cylinder axis. Because of the space dependency of the speed of sound even in
a cylinder only approximate longitudinal modes are possible (left). Despite the short wavelength
of the high order mode on the right the resolution of the FE-mesh is sufficient to represent the
mode accurately.




