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Abstract: We demonstrate the accuracy of
the Finite Element Method (FEM) to char-
acterize an arbitrarily shaped crossed-grating
in a multilayered stack illuminated by an ar-
bitrarily polarized plane wave under oblique
incidence. To our knowledge, this is the first
time that 3D diffraction efficiencies are calcu-
lated using the FEM. The method has been
validated using classical cases found in the
literature. Finally, to illustrate the indepen-
dence of our method towards the shape of the
diffractive object, we present the global energy
balance resulting of the diffraction of a plane
wave by a lossy thin torus crossed-grating.
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1 Introduction

To date, numerical methods are devoted to the
calculation of the repartition of the energy re-
sulting from the diffraction of a plane wave
by a crossed-grating : the Rigorous Coupled-
Wave Method (RCWA [1]), also known as the
Fourier Modal Method (FMM [2]) , the differ-
ential method [3], the Chandezon (C) method
[4], the Rayleigh method [5] and the method
of variation of boundaries [6]. Some of them
appear to require some memory and time con-
suming adjustments depending on whether the
grating presents, for instance, abrupt sections
or a strong index modulation. The present
paper is aimed at introducing the resolution
of this diffraction vectorial problem through
a formulation fully based on the FEM with
2nd edge elements and relying on the the same
principles developed in [7]. By presenting a
global energy balance in the case of a lossy
torus–shaped diffractive object, we finally em-
phasize the independence of our method to-
wards the geometry.

We denote by x, y and z, the unit vectors
of the axes of an orthogonal coordinate sys-

tem Oxyz. We only deal with time-harmonic
fields; consequently, the electric and magnetic
fields are represented by the complex vector
fields E and H, with a time dependance in
exp(−i ω t). Besides, in this paper, for the
sake of simplicity, the materials are assumed to
be isotropic and therefore are optically char-
acterized by there relative permittivity εr and
relative permeability µr. It is of importance
to note that lossy materials can be studied
(the permittivity and permeability are repre-
sented by possibly complex valued functions).
Moreover the method used in this paper does
work irrespective of whether the materials are
homogeneous: the permittivity (resp. perme-
ability) can vary continuously (gradient index
gratings) or discontinuously (step index grat-
ings). The bigratings that we are dealing with
are made of three distinct regions as suggested
in Fig. 1:

• The superstrate (above the translucent
white plane in Fig. 1 ) (z > h) which is
supposed to be homogeneous, isotropic
and lossless and characterized solely by
its relative permittivity ε+ and its rel-
ative permeability µ+ and we denote
k+ := k0

√
ε+µ+, where k0 := ω

c ,

• The substrate (bottom region in Fig. 1)
(z < 0) which is supposed to be homoge-
neous and isotropic and therefore char-
acterized by its relative permittivity ε−

and its relative permeability µ− and we
denote k− := k0

√
ε−µ−,

• The groove region (0 < z < h) which
can be heterogeneous and thus charac-
terized by the scalar fields εg(x, y, z) and
µg(x, y, z). The groove periodicity along
the x–axis is supposed to be equal to the
periodicity along the y–axis and will be
denoted d in the sequel.
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Figure 1: Set up of the problem and notations.

This bigrating is illuminated by an in-
cident plane wave of wave vector k+ de-
fined by the angles θ and ϕ (k+ =
k+ (sin θ cosϕx + sin θ sin ϕy + cos θ z)) and
whose the electric field E0 is linearly polar-
ized along the direction defined by the unit
vector A0 ( E0 = A0 exp (ik+ · r), with
A0 = (cos Ψ cos θ cos ϕ− sinΨ sin ϕ)x +
(cosΨ cos θ sinϕ + sin Ψ cos ϕ)y−(cosΨ sin θ) z),
where Ψ is the polarization angle. The prob-
lem of diffraction that we address in this paper
is therefore to find Maxwell equation solutions
in harmonic regime i.e. the unique solution E
of:

Mεr,µr (E) := − curl
(
µ−1

r curlE
)
+k2

0 εr E = 0 ,
(1)

such that the diffracted field satisfies an Out-
going Waves Condition (OWC [8]) and where
E is a quasi-periodic functions with respect to
x and y co-ordinates.

In what follows, one summarizes and gen-
eralizes the method developed in [7] for the
two-dimensional case. In its initial form, the
problem of diffraction summed up by Eq.(1) is
not well suited to the Finite Element Method.
In order to overcome this difficulty, we propose
to split the unknown function E into a sum of
two functions E1 and Ed

2, the first term be-
ing known as a closed form and the latter be-
ing a solution of a problem of radiation whose
sources are localized within the obstacles.

We have assumed that outside the groove
region (cf. Fig. 1), the scalar field εr and µr

are constant and equal respectively to ε− and
µ− in the substrate (z < 0) and equal respec-
tively to ε+ and µ+ in the superstrate (z > h).
With such notations, εr and µr are therefore

defined as follows:

ξr(x, y, z) :=





ξ+ for z > h
ξg(x, y, z) for h > z > 0
ξ− for z < 0

(2)
where ξ = {ε, µ}. It is now appropriate to in-
troduce two auxiliary scalar fields, namely ε1

and µ1 :

ξ1(x, y, z) :=
{

ξ+ for z > 0
ξ− for z < 0 , (3)

where ξ = {ε, µ}, these quantities correspond-
ing, of course, to a simple plane interface. Fi-
nally, we denote E0

0 the vector field which is
equal to the incident field E0 in the superstrate
and vanishes elsewhere

E0
0(x, y, z) :=

{
E0 for z > h
0 for z < h

. (4)

We are now in a position to define more pre-
cisely the problem of diffraction that we are
dealing with. The function E is the unique so-
lution of Eq. (1) such that Ed := E−E0

0 satis-
fies an OWC. In order to reduce this problem
of diffraction to a radiation problem, an inter-
mediate vector field is necessary. This vector
field, called E1, is defined as the unique solu-
tion of the equation:

Mε1,µ1(E1) = 0 (5)

such that Ed
1 := E1−E0

0 satisfies an OWC. The
vector field E1 corresponds thus to an annex
problem associated to a simple interface and
can be solved in closed form and from now
on is considered as a known vector field. A
third and last field denoted Ed

2 has to be in-
troduced as mentioned above; this field is sim-
ply defined as the difference between E and
E1: Ed

2 := E−E1 = Ed−Ed
1 . It then appears

that this latest field satisfies an OWC, which is
of prime importance to use Perfectly Matched
Layers (PML [9]). As a result, by making use
of Eq. (5), the Eq. (1) becomes:

Mεr,µr
(Ed

2) = −Mεr,µr
(E1) = −Mεr−ε1,µr−µ1(E1) ,

(6)
where the right hand member is a vector field
which may be interpreted as a known source
term whose support is localized only within
the groove region. The problem of radiation
summed up in Eq. (6) is solved by using both
PML at the bottom and at the top of the
meshed domain and by taking into account the
quasiperiodicity conditions on lateral bounds



on the same area via Bloch conditions [10].
The cell is meshed using second order tetrahe-
dral edge elements [11]. In the following nu-
merical examples, the maximum element size
is set to λ/(8

√
|<e(ε)|). The final algebraic

system is solved using a direct solver (PAR-
DISO).

2 Energetic considerations

2.1 Diffraction efficiencies

The FEM allows to obtain directly the com-
plex components of Ed at each point of the
computational domain.

Ed, being defined as a difference between
two quasi-periodic vector fields, is quasiperi-
odic with respect to x and y co-ordinates and
can be expanded as a Rayleigh expansion:

Ed
x(x, y, z) =

∑

(n,m)∈Z2

ud,x
n,m(z) e−i (αn x+βm y) (7)

with αn = α0 + 2 π
dx

n, βm = β0 + 2 π
dy

m and

ud,x
n,m(z) =

1
dx dy

∫ dx/2

−dx/2

∫ dy/2

−dy/2

Ed
x(x, y, z) e−i (αn x+βm y) dx dy (8)

Introducing this decomposition into the
Helmholtz equation scalarly verified by each
component of Ed everywhere but in the groove
region leads to the expression of the Rayleigh
coefficients in the superstrate and the sub-
strate:

ud,x
n,m(z) = ex,p

n,m e−i γ+
n,m z + ex,c

n,m e i γ+
n,m z (9)

with γ±
2

n,m = k±
2 − α2

n − β2
m, where γn,m (or

−i γn,m) is defined positive. ud,x
n,m corresponds

to the sum of a propagative plane wave and a
couterpropagative plane wave. Consequently,
the OWC impose:

∀(n,m) ∈ Z2





ex,p
n,m = 0 for z > H

ex,c
n,m = 0 for z < 0

(10)

Eq. 8 allows to determine ex,c
n,m (resp. ex,p

n,m)
by double numerical integration of a cutting
of the field Ed

x at a fixed altitude zc in the su-
perstrate (resp. substrate). The components
Ed

y and Ed
z can be discomposed exactly the

same way, which leads to complex numerical
values for e

y,{c,p}
n,m and e

z,{c,p}
n,m .

Finally, we deduce the transmitted and re-
flected diffraction efficiencies defined by the
following expressions, close to the one known
in the scalar case[8]:




∀zc > H Rn,m = γ+
n,m

γ0
ec

n,m(zc) · ec
n,m(zc)

∀zc < 0 Tn,m = γ−n,m

γ0
ep

n,m(zc) · ep
n,m(zc)

(11)

with e{c,p}
n,m = e

x,{c,p}
n,m x + e

y,{c,p}
n,m y + e

z,{c,p}
n,m z.

2.2 Joule loss

Let us consider a lossy dielectric material char-
acterized by its complex permittivity denoted
εr = ε′ + ε′′ i, its complex permeability µr =
µ′ + µ′′ i and the normal outward unit vector
n to its surface S enclosing its volume Ω. Let
us assume that there is not any magnetic dis-
sipation for this material, which amounts to
µ′′ = 0.
In the isotropic case, without any current,
Joule losses, denoted Q, can be expressed as:

Q =
1
2

∫

Ω

ω ε′′E ·EdΩ (12)

Volumes and normal outward vectors being
implicitly defined when dealing with the FEM,
this quantity can be easily obtained once the
vector field E is known at each point of the
computational domain.

Finally, knowing the diffraction efficiency
of each propagative order (n,m) and the losses
inside each lossy material, a complete en-
ergy balance of the diffraction problem can be
made:

∑
n,m

Rn,m +
∑
n,m

Tn,m + Q = 1 (13)

In the next section, we present three numerical
illustrations, numerically validated using both
values found in the bibliography and a global
energy balance.



3 Numerical validation of the
method

3.1 Pyramidal crossed grating

Figure 2: <e (Ey) in V/m.

The numerical results obtained with the FEM
applied to the pyramidal configuration (Fig. 2)
show good agreement with the C method [4,
12], the Rayleigh method [5] and the RCWA
[13] as shown in Table 1. Note that the diffrac-
tive pattern has oblique sides. The grating
parameters are : ϕ = θ = 0◦ and ψ = 45◦,
h = λ and dx = dy = 5

√
2/4 λ, ε+ = 1 and

ε− = εg = 2.25.

C [4] RM [5] RCWA [13] C [12] 3D FEM
R−1.0 0.00254 0.00207 0.00246 0.00249 0.00251
R0.0 0.01984 0.01928 0.01951 0.01963 0.01938
T−1.−1 0.00092 0.00081 0.00086 0.00086 0.00087
T0.−1 0.00704 0.00767 0.00679 0.00677 0.00692
T−1.0 0.00303 0.00370 0.00294 0.00294 0.00299
T0.0 0.96219 0.96316 0.96472 0.96448 0.96447
T1.0 0.00299 0.00332 0.00280 0.00282 0.00290
TOTAL 0.99855 1.00001 1.00008 0.99999 1.00004

Table 1: Comparison with other methods[4, 5, 13, 12] and energy balance.

3.2 Circular apertures in a lossy layer

Figure 3: <e (Ey) in V/m.

Compared to the results obtained with the
FMM [2], the Differential Method (DM[1]) and
the RCWA [14] in a lossy case (cf. Fig. 4),
the FEM still gives pertinent results (with
λ0 = 500nm, ϕ = θ = 0◦ and ψ = 45◦,
h = 50nm and dx = dy = 1µm, ε+ = 1,
εg = 0.8125 + 5.25 i and ε− = 2.25). Note
that the geometry has vertical edges.



RCWA [14] FMM [2] DM [1] 3D FEM
R0.0 0.24657 0.24339 0.24420 0.24415

+2∑
n=−2

+2∑
m=−2

Tn,m − − − 0.29110

+1∑
n=−1

+1∑
m=−1

Rn,m − − − 0.26761

Q − − − 0.44148
TOTAL − − − 1.00019

Table 2: Comparison with other methods[14, 2, 1] and energy balance.

3.3 Bi-sinusoidal grating

In this example, the surface of the grating is
given by the function f defined by :

f(x, y) =
h

4

[
cos

(
2 π x

d

)
+ cos

(
2 π y

d

)]

(14)

Figure 4: <e (Ez) in V/m.

The grating parameters are : λ0 = 0.83,
ϕ0 = 0 ◦, θ0 = 0 ◦, ψ0 = 0 ◦, dx = 1, dy = 1,
h = 0.2 (cf. Eq. (14)) ε+ = 1, ε− = 4 and
εg = 4.

MVB[6] FEM
R−1,0 0.01044 0.01164
R0,−1 0.01183 0.01165
T−1,−1 0.06175 0.06299

+2∑
n=−2

+2∑
m=−2

<e(Rn,m) - 0.10685

+2∑
n=−2

+2∑
m=−2

<e(Tn,m) - 0.89121

TOTAL - 0.99806

Table 3: Comparison with another method[6] and
energy balance.

In order to define the geometry of this model,
the bi-sinusoid has been sampled (15 × 15
points), converted into a standard 3D file for-
mat and merged into the other subdomains
of the cell. This sampling accounts for the
slight differences with the results found with
the Method of Variation of Boundaries (MVB)
developed by Bruno et al.[6] (1993). This
way to define geometries thanks to standard
CAD (Computer-Assisted Design) objects is
very flexible.

4 Diffraction by a strongly lossy
torus

Figure 5: Lossy torus.



Finally, we consider a grating made of lossy
toruses as shown Fig. 5. The implementation
of this complex geometry with other numerical
method is possible, but not as straightforward
as with the FEM. The grating parameters are
: ϕ = θ = ψ = 0◦, dx = dy = 0.3, a = 0.1,
b = 0.05, R = 0.15, ε+ = 1, ε− = 2.25. More-
over, the difficulty of this case is increased by
choosing a value of εg so that the skin depth
δ ≈ b, which maximises losses. For instance,
with εg = −21 + 20 i, losses Q are of the same
order of magnitude as R or T .

FEM 3D θ = 0◦ θ = 40◦

R0,0 0.36376 0.27331
T0,0 0.32992 0.38191
Q 0.30639 0.34476
TOTAL 1.00007 0.99998

Table 4: Energy balance of the problem (cf.
Fig. 5).

5 Conclusion

We developed a new formulation of the FEM
adapted to the rigorous study of the diffrac-
tion of an arbitrarily polarized plane wave by
a crossed grating. The method principle re-
mains independent of the geometry and the
number of diffractive pattern. It relies on a
rigorous treatment of the plane wave sources
problem through an equivalent radiation prob-
lem with localized sources. Bloch conditions
and PML have been implemented in order
to rigorously truncate the computational do-
main.

We compare the diffraction efficiencies of
various crossed gratings (oblic/vertical edges
and lossy/lossless constitutive materials for
the diffractive pattern). To our knowledge,
this is the first time that numerical values of
diffraction efficiencies of crossed gratings are
calculated using a formulation of the FEM
entirely based on second order vectorial ele-
ments.

The main advantage of this method is its
complete generality with respect to the stud-
ied geometries and the material properties.
Nowadays, the efficiency of the numerical algo-
rithms for sparse matrix algebra together with
the available power of computers and the fact
that the problem reduces to a basic cell with

a size of a small number of wavelengths make
the 3D problem very tractable as proved here.

Furthermore, this case can be easily ex-
tended to the case of a crossed grating em-
bedded in a multilayered dielectric stack. The
generalization to the case of an arbitrary
anisotropic diffractive object is straightfor-
ward. Studies are in progress in these direc-
tions.
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