Use of COMSOL as an Educational Tool through its Application to Ground Water Pollution

Presented at the COMSOL Conference 2009 Milan
Arezou MODARESSI-FARAHMAND-RAZAVI

Laboratoire MSS-Mat École Centrale Paris arezou.modaressi@ecp.fr

16 October - COMSOL 2009 Milan

- 2 Statemend of problem
- **3** Ground Water flow
- Pollutant transfer and transport

Contents

- 2 Statemend of problem
- Ground Water flow
- Pollutant transfer and transport

5 Conclusion

Introduction

Description of the course

- Transport and transfer of pollutants in the soil
- Waste disposal and ground water protection
- Curiculum
 - Undergraduate level in a generalist engineering school ,
 - 9/33 hours
 - MSc in Soil & Rock Mechanics
 - 12/21 hours

Introduction

Description of the course

- Transport and transfer of pollutants in the soil
- Waste disposal and ground water protection
- Curiculum
 - Undergraduate level in a generalist engineering school ,
 - 9/33 hours
 - MSc in Soil & Rock Mechanics
 - 12/21 hours

Contents

- 2 Statemend of problem
- Ground Water flow
- Pollutant transfer and transport

5 Conclusion

Statement of problem

Domestic waste disposal near a river

Physical mechanisms

- Ground water flow
- Transport & transfer of pollutant

Geohydrological configuration

- medium sand
- clay layer
- hydraulic gradient

- 2 Statemend of problem
- **3** Ground Water flow
- Pollutant transfer and transport

Ground water flow

Discover COMSOL through an example with analytical solution

Lowering of water table through excavation of a trench

- Q1: Give the conceptual model including the governing equations and the corresponding boundary conditions
- R1: Water mass balance through a porous media respecting Darcy's flow rule:

$$-\underline{\nabla} \cdot (\underline{\underline{k}} \underline{\nabla} h) = S \frac{\partial h}{\partial t} \quad \underline{x} \in \Omega$$
 (1)

with:

- h: hydraulic head,
- S: storage capacity which can be neglected,
- \underline{k} the hydraulic conductivity tensor.

- $\mathsf{Q2}$ Compute the flux of water to be pumped and discuss the precision. How can the difference be reduced?
- R2 Dupuit assumption (flow is horizontal in each vertical section) gives the input and output flows on Γ_{h_5} and Γ_{h_4} boundaries:

$$Q_{\Gamma_i} = \int_{\Gamma_i} k \frac{\partial h}{\partial n} dS \tag{5}$$

Flow lines & equipotential contours

Sand lentils

REV model

• $k_h = 10k_v$

- Horizontal & vertical flow
- Computation of equivalent horizontal & vertical conductivity

$$\int_{\Gamma_i} k \frac{\partial h}{\partial n} dS = \mathcal{K}_{eq} \frac{\Delta h}{\Delta L} \tag{6}$$

- 2 Statemend of problem
- Ground Water flow
- Pollutant transfer and transport

13 / 20

Pollutant transfer and transport

Extension of the contamination plum

- A variety of pollutant origins with different physical characteristics can be studied
 - Miscible or immiscible,
 - Light or heavy,
 - bio-degradable,
 - etc

• Miscible one species pollutant (sake of simplicity)

- Q1: Give the conceptual model including the governing equations and the corresponding boundary conditions
- R1: Mass balance of the species taking into account advection, diffusion, dispersion and possibly sorption:

$$r\frac{\partial c}{\partial t} - \underline{\nabla} \cdot \left(-\underline{\underline{D}} \cdot \underline{\nabla} c\right) + \underline{\nu} \cdot \underline{\nabla} c = 0$$
(7)

with:

- c : concentration of the pollutant,
- <u>v</u>: the advection transport velocity $(=V_r/\theta, V_r = -\underline{k}/\theta \cdot \underline{\nabla}h, \theta$: porosity)
- <u>D</u> : hydrodynamic dispersion tensor given by:

$$\underline{\underline{D}} = \underline{\underline{D}}_{0} + \alpha_{L} \underline{\underline{e}}_{L} \otimes \underline{\underline{e}}_{L} + \alpha_{T} \underline{\underline{e}}_{T} \otimes \underline{\underline{e}}_{T}$$
(8)

- <u>D</u>: bulk diffusion of the medium,
- α_L and α_T : longitudinal and transversal dispersivity coefficients,
- <u>e</u>_A: unit vector along the A direction
- r: retardation factor , equal to one when absence of adsorption.

Questions & answers

Boundary conditions

• Neumann condition with no diffusive flux:

$$\underline{n} \cdot (D_n \underline{\nabla}_n c) = 0 \quad \underline{x} \in \Gamma_{c_1}, \Gamma_{c_3}, \Gamma_{c_5}$$
(9)

• Advective flux boundary:

$$\underline{n} \cdot (D_n \frac{\partial c}{\partial n}) + v_n \cdot c = v_n \cdot c \quad \underline{x} \in \Gamma_{c_2}, \Gamma_{c_6}$$
(10)

The domain and its boundaries for the solute transport problem

Questions & answers

Extension of pollution Time-120 durbox u Mac 1.45 140 120 100 60 40 20 0 -20 -40 -00 .180 428 140 180 110 286 -228 240 2004 Min -0.874 Contours of concentration after 10 years C * = 1

Questions & answers

Confinement walls

- Q2 Give the flux of water to pump in order to prevent solute propagation and to keep the fill out of water
- R2 Water flow patern modified after confinement and excavation. Modification of hydraulic boundary conditions:
 - Neumann boundary condition:

$$\underline{n} \cdot (k_n \underline{\nabla}_n h) = 0 \tag{12}$$

 $\underline{x} \in \Gamma_{h_1}, \Gamma_{h_{2b}}, \Gamma_{h_{2c}}, \Gamma_{h_3}, \Gamma_{h_4}, \Gamma_{h_5}, \Gamma_{h_{6b}}, \Gamma_{h_{6c}}$ • Dirichlet conditions:

$$h = H_1 \quad \underline{x} \in \Gamma_{h_{2a}}, \Gamma_{h_{6a}} \tag{13}$$

$$h = H_1 - 10m \quad \underline{x} \in \Gamma_{h_7} \tag{14}$$

R3 Sand lentils: multiplication of the flux to be pumped by 10

Introduction

Ground Water flow

Pollutant transfer and transport

Conclusion

Questions & answers

Contents

- 2 Statemend of problem
- Ground Water flow
- Pollutant transfer and transport

5 Conclusion

- Step by step approach using COMSOL
 - intuitive use
 - adequate default values
 - practical post-processing
 - automatic report
- Other possibilities
 - Remediation techniques
 - reactive permeable barrier
 - bio-degradation
 - venting
 - ... 🍳
 - Physical models
 - transfert mechanisms: degradation
 - immiscible species: multiphase flow
 - multiple species & coupling between them
 - ...
 - Numerical point of view
 - streamline
 - regularisation
 - non linearities (isoterm, conductivity,...)
 - taking into account uncertainties
 - interpretation of hydrogeological data