Thermal and Electrostatic Analyses of One Dimensional CFC Diagnostic Calorimeter for SPIDER Beam Characterisation

M. De Muri ${ }^{* 1,2}$, M. Dalla Palma ${ }^{1}$, P. Veltri ${ }^{1}$, A. Rizzolo ${ }^{1}$, N. Pomaro ${ }^{1}$, G.Serianni ${ }^{1}$

${ }^{1}$ Consorzio RFX, Associazione EURATOM-ENEA sulla fusione, Corso Stati Uniti 4, I-35127 Padova, Italy
${ }^{2}$ Dipartimento di Ingegneria Elettrica, Padova University, Italy
michela.demuri@igi..nnr.it
ELECTROSTATIC stationary analysis. THERMAL transient, non-linear analyses

STRIKE PURPOSES
ITER Requirements: Uniformity $\leq \pm 10 \%$ Measure of: Beam Uniformity Power dwposition Negative ion current Beam divergence Stripping losses in SPIDER

STRIKE REQUIREMENTS

Observation of rear side
Several seconds pulses
- Energy flux uniformity measurements
- Current uniformity measurements
- Divergence measurements
- 2 positions (open-close)
- 2 axial distances
- 2 converging panels

PHYSICAL PHENOMENA IN SPIDER

Beam particle with the same charge \rightarrow Beam divergence
Stripping within the accelerator \rightarrow Beam divergence
Stripping between the accelerator and STRIKE: $\quad \mathrm{D}^{-} \rightarrow \mathrm{D}^{0}, \quad \mathrm{D}^{-} \rightarrow \mathrm{D}^{+}$ Beam interaction wjth background gas \rightarrow Plasma formation \rightarrow Radiating sheet Particles impact to STRIKE $\rightarrow\left\{\begin{array}{l}\text { Secondary electrons emission } \\ \text { Sublimation } \rightarrow \text { Radiating sheet }\end{array}\right.$

Preliminary specifications and feasibility study

Electrostatic analysis

Hp: D+, D-, D ${ }^{0}$ extract secondary electrons at 3 eV
Scope: prevent secondary electrons extracted from a tile from being collected by another tile to measure the beam current distribution Cases simulated: starting angle $30^{\circ}, 45^{\circ} 60^{\circ}, 90^{\circ}$
biasing voltages $60 \mathrm{~V}, 100 \mathrm{~V}, \underline{200 \mathrm{~V}}$

Simulated material: Graphite

> Carbon Fibre Composites (CFC): \quad - MFC-1A by Mitsubishi $-2602 Z V$ by SGL CARBON GROUP -1501 by SGL CARBON GROUP

Modelled system: part of a sector around the area hit by one beamlet. The surface Simulated cases: thiere
Simulated cases: thicknesses : $5 \mathrm{~mm}, 20 \mathrm{~mm}$ and 30 mm
different pulse durations: $0.1 \mathrm{~s}, 1 \mathrm{~s}$ and 2 s
heat fluxes: $10 \mathrm{MW} / \mathrm{m}^{2} 20 \mathrm{MW} / \mathrm{m}^{2}$ and $100 \mathrm{MW} / \mathrm{m}^{2}$
20 mm thickness, $20 \mathrm{MW} / \mathrm{m}^{2}$ and 1 s pulse duration; observation performed when heat load ends

Temperature profile along profilie along middde line of the simulated middle line of the simulated sample MFC1-A MFC1-A 20 mm

 Conclusion: MFC1-A is thematerial for future
simulations; 20 mm thickness

Uniformity

- 869 K

正

Power per Beamlet - 15

-

Power per beamlet + 5% Reference case: 848 K

Assessment of sensitivity to beamlet deflection

 Beam characteristic: Gaussian distributionModelled system: half bemalet group $(0.396 / 2) \times(0.32) \mathrm{m}^{2}$
Vertical misalignment is negligible
5 s pulse duration and observation when heat load ends

BA
Tmax about 825 K

Assessment of calorimeter position

Beam characteristic: Gaussian distribution Modelled system: $(0.396 / 2) \times(0.16 / 2)$ orthogonal, $(0.396 / 2) \times(0.32 / 2)$ angled 0.02 m thickness, MFC1-A

$\tau=5 \mathrm{~s} ; \delta=3 \mathrm{mrad} ; \mathrm{d}=1 \mathrm{~m} ; \mathrm{t}=\tau ; \mathrm{RT}=300 \mathrm{~K}$
observation when heat load ends
angled

FRONT
Tmax-1100K
Temperature vs Time

Conclusion:An angle of 60 degrees between the beam direction and the normal to the calorimeter surface should be sufficient to avoid too high superficial temperature, to allow 5 s pulses and at the same time to provide a good IR cameras image.

Thermal simulation with radiation

Beam characteristics: Gaussian-shaped beamlets, with peak heat flux $20 \mathrm{MW} / \mathrm{m}^{2}$, halfwidth 3 mm and divergence 3 mrad
Simulated cases: 0.02 m thickness, MFC1-A
(1) after flux application, all tile faces are thermally insulated; three consecutive 5 s load applications
(2) after flux application, all tile faces are thermally insulated; at all times the face opposite the one hit by the beam radiates towards a surface at 300 K ; four consecutive 5 s load applications
(3) after flux application, all tile faces are thermally insulated; at all times the face opposite the one hit by the beam radiates towards a surface at 300 K ; three

Case (3) at the end of third pulse

Conclusion: operational range of IR cameras 10 s pulse duration 1200 s time between pulses no active cooling

Measurement of divergence

Modelled system: a quarter of a bemalet group ($0.396 / 2$) $\times(0.32 / 2) \mathrm{m}^{2}$ 0.02 m thickness, MFC1-A

results
 0.02 m thickness, MFC1-A, radiation, 10s pulse duration
$X=160, Y=187$ Corresponding to center of central
$X=10, Y=10$
Corresponding to SS Frame

Conclusions: on the basis of COMSOL results, decision taken about:

