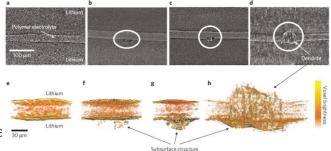
Development and Analysis of Solid-State Batteries through Implementation of the COMSOL® Platform

Neyra, J., Garrison, T., Miorana S.


The Need for Solid-State

Energy density in liquid Lithium-Ion batteries has begun to plateau. Production of Lithium-ion batteries does not match the demands of consumers, industry, or development. We have grown accustomed to smaller and smaller devices, but each new iteration demands higher performance - the means of supplying power has to change for this trend to continue. Safe, efficient, and effective is great, but safer, more efficient, and more effective is better.

Solid-state batteries are:

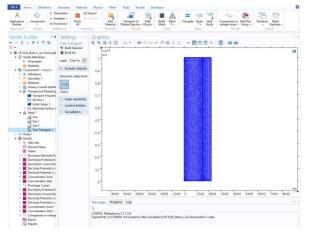
- Less flammable
- More durable
- Longer lasting
- Kinder to the environment

(in comparison to batteries with liquid lithium-ion electrolyte 30,000

Solid-State to Date

Solid-state battery research has been going on since the 1800s, but meaningful advances have been made in the last few decades towards the realization of such devices. Universities, industry leaders, and even the Department of Energy are moving towards fabricating and implementing solid-state batteries.

Within the last year alone, approximately \$1.3 billion dollars have been dedicated toward energy storage research, with an estimated third of that wholly towards solid-state battery development. Start-ups developed solely around solid-state research are finding themselves with between \$20 and \$125 million for their efforts.


Benefit of Research with $COMSOL \mathbb{R}$

COMSOL® lends itself to this research because of its flexibility and ease of use. We are able to modify geometries, equations, and more. COMSOL® allows us to add in multiple studies to gain the data needed.

For undergraduate students at a very small university, access to resources is limited. Using COMSOL® allows for the simulation of ideas and the ability to support claims before requesting lab time with professors.

An additional impetus for our research has been to pursue green initiatives. SSBs offer an efficient, therefore greener, alternative energy storage option, but COMSOL® provides an ecologically friendly means to conduct the research itself.

Solid State Battery Design and Simulation

2D Model Lithium Ion SSB

A 2D model was implemented so that the lithium ion transfer across the battery can be observed.

Battery Components and materials:

Positive Electrode Material: Cobalt Oxide LiCoO2 Lithium

Electrolyte Material Composition: Li3PO4 Lithium Phosphate

**The Negative Electrode is a lithium foil assumed to be an infinite source of Li-ions .

Solid State Battery Design and Simulation

Electrode Kinetics

Batteries and Fuel Cells Module

Physics used:

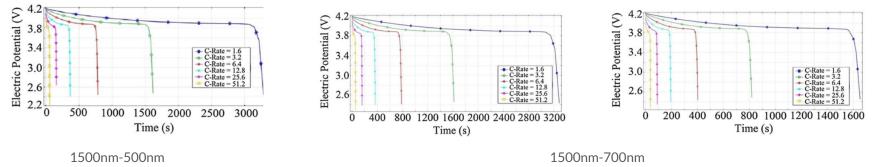
Tertiary Current Distribution Interface To model the electrochemical reactions.

Transport of Diluted Species Interface To model the transport of lithium ions in the positive electrons.

The reaction kinetics in the study is described by the Butler-Volmer Equation. Fig3.

a alpha_neg 1 Cathodic transfer coefficient: a α_a alpha_neg 1 Cathodic transfer coefficient: a α_c 1-alpha_neg 1 $i_{expr} = i_0 \left(exp \left(\frac{\alpha_s F \eta}{RT} \right) - exp \left(\frac{-\alpha_c F \eta}{RT} \right) \right)$ Imiting current density	▼ E	lectrode Kinetics			
$\begin{split} & \text{Exchange current density:} \\ & i_0 i_0_\text{neg} & \text{A/r} \\ & \text{Anodic transfer coefficient:} \\ & \alpha_a [alpha_neg & 1 \\ & \text{Cathodic transfer coefficient:} \\ & \alpha_c [1-alpha_neg & 1 \\ & i_{expr} = i_0 \left(exp\left(\frac{\alpha_a F \eta}{RT}\right) - exp\left(\frac{-\alpha_c F \eta}{RT}\right) \right) \\ & \forall \text{Limiting current density} \\ & i_{lim} 1es(Am^2 2) & \text{A/r} \\ & i_{loc} = \frac{i_{expr}}{1 + \frac{expr}{T} } \\ & \forall \text{Stoichiometric Coefficients} \\ & \text{Number of participating electrons:} \\ & n 1 \\ & \text{Stoichiometric coefficients:} \\ & \forall c_{c_1} = 0 \\ & \forall n_s = \left(\frac{n + \sum_{i=1}^{W-1} z_i v_i}{z_N}\right) \\ & R_i = \frac{-V_{ijcc}}{n_F} \\ \end{split}$	Kinet	ics expression type:			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Bu	tler-Volmer	•		
Anodic transfer coefficient: $\begin{aligned} \alpha_{s} alpha_{n}eg & 1 \\ Cathodic transfer coefficient: \\ \alpha_{c} 1-alpha_{n}eg & 1 \\ i_{expr} = i_{0}\left(exp\left(\frac{\alpha_{s}F\eta}{R^{-}}\right) - exp\left(\frac{-\alpha_{c}F\eta}{R^{-}}\right)\right) \\ \forall Limiting current density \\ i_{lim} 1e5[A/m^{+}2] & A/r \\ i_{lec} = \frac{i_{expr}}{1 + \left \frac{e_{expr}}{r_{lim}}\right } \\ \bullet Stoichiometric Coefficients \\ Number of participating electrons: n 1 \\ Stoichiometric coefficients: \\ \psi_{c, Li} = n \\ \psi_{c, n} 0 \\ \psi_{R} = \frac{-\frac{V_{i=1}^{N-1}z_{i}v_{i}}{\rho_{F}} \\ \end{aligned}$	Excha	ange current density:			
$\begin{aligned} \alpha_{\bullet} & a ph_{a}_neg & 1 \\ \text{Cathodic transfer coefficient:} & \\ \alpha_{e} & 1-a ph_{a}_neg & 1 \\ i_{evop}=i_{0}\left(exp\left(\frac{\alpha_{a}r\eta}{RT}\right)-exp\left(\frac{-\alpha_{e}r\eta}{RT}\right)\right) \\ $	i _o	i0_neg	A/m²		
Cathodic transfer coefficient: $\begin{aligned} \alpha_{c} 1-alpha, neg \\ i_{espr} = i_{0} \left(exp\left(\frac{\alpha_{s} F \eta}{RT}\right) - exp\left(\frac{-\alpha_{c} F \eta}{RT}\right) \right) \\ \overrightarrow{v} \text{Limiting current density} \\ i_{lim} 1e5[A/m^{-}2] \\ i_$	Anoc	lic transfer coefficient:			
$\begin{aligned} \alpha_{c} 1-\text{alpha_neg} & 1 \\ i_{expr} = i_{0} \left(exp\left(\frac{\alpha_{s} r \eta}{RT}\right) - exp\left(\frac{-\alpha_{c} r \eta}{RT}\right) \right) \\ & [\textbf{Limiting current density} \\ i_{lim} 1es[\alpha - \frac{1}{RT}] & \text{A/r} \\ i_{lim} 1es[\alpha - \frac{1}{RT}] \\ & \text{stoichiometric Coefficients} \\ & \text{Number of participating electrons:} \\ n 1 \\ & \text{Stoichiometric coefficients:} \\ & \nu_{c,u} \text{Li}_{en} 1 \\ & \text{Stoichiometric coefficients:} \\ & \nu_{c,u} \text{Li}_{en} 1 \\ & \text{N}_{en} = \left(\frac{1}{RT} \frac{1}{2} z \nu_{i}}{\rho_{en}}\right) \\ & R_{i} = \frac{-\frac{\nu_{fine}}{\rho_{en}}} \end{aligned}$	αa	alpha_neg	1		
$\begin{split} i_{espr} &= i_0 \bigg(exp \bigg(\frac{\alpha_s F \eta}{RT} \bigg) - exp \bigg(\frac{\alpha_s F \eta}{RT} \bigg) \bigg) \\ &\searrow \text{ Limiting current density} \\ i_{lim} \frac{1e5[A/m^22]}{1 + \left\ \frac{espr}{F \eta} \right\ } \\ &\Rightarrow \text{ Stoichiometric Coefficients} \\ & \text{Number of participating electrons:} \\ n 1 \\ & \text{Stoichiometric coefficients:} \\ & \nu_{c_{\perp} L_{\perp} lon} -1 \\ & \nu_{c_{n}} 0 \\ & \eta_{N} = \frac{-\left(n + \sum_{i=1}^{N-1} z_{i} \nu_{i} \right)}{\rho_{F}} \\ & \eta_{i} = \frac{-\nu_{i} j_{c_{n}}}{\rho_{F}} \end{split}$	Cathodic transfer coefficient:				
$ \begin{array}{c} \hline \textbf{V} \mbox{ Limiting current density} \\ \hline \textbf{i}_{lim} \mbox{ 1eS[A/m^{+}2]} & A/r \\ \hline \textbf{i}_{liec} = \frac{i_{expr}}{1 + \left\ \frac{expr}{ \mathbf{r}_{lim} } \right\ } \\ \hline \textbf{V} \mbox{ Stoichiometric Coefficients} \\ \hline \textbf{Number of participating electrons:} \\ n \mbox{ 1} \\ \hline \textbf{Stoichiometric coefficients:} \\ \hline \textbf{V}_{c,lin} \mbox{ 1} \\ \hline \textbf{V}_{c,n} \mbox{ 0} \\ \hline \textbf{V}_{N} = \left(\frac{n + \sum_{i=1}^{N-1} z_i \mathcal{V}_i}{z_N} \right) \\ \hline \textbf{R}_i = \frac{-V_{inc}}{n^{p_c}} \\ \hline \end{array} $	αc	1-alpha_neg	1		
$\begin{split} & \lim_{l_{10}} 1e5[\Delta/m^{+}2] & \Delta/r \\ & \lim_{l_{10}} 1e5[\Delta/m^{+}2] & \Delta/r \\ & \lim_{l_{10}} 1e\frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \text{Stoichiometric Coefficients} \\ & \text{Number of participating electrons:} \\ & n & 1 \\ & \text{Stoichiometric coefficients:} \\ & \mathcal{V}_{L_{10}} 1e\frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{L_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{L_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} = \frac{ e_{10}r_{11} }{ e_{10}r_{11} } \\ & \mathcal{V}_{R_{10}} $					
$\begin{split} i_{lsc} &= \frac{i_{expr}}{1 + \left \frac{f_{expr}}{f_{lim}} \right } \\ &\Rightarrow \text{ Stoichiometric Coefficients} \\ \text{Number of participating electrons:} \\ n & 1 \\ \text{Stoichiometric coefficients:} \\ & \mathcal{V}_{\underline{c},\underline{L},\underline{i}an} \left[-1 \\ 0 \\ & \mathcal{V}_{N} = \left(\frac{n + \sum_{i=1}^{N-1} z_i v_i}{z_N} \right) \\ & \mathcal{N}_{R} &= \frac{-V_{iloc}}{nc} \end{split}$					
► Stoichiometric Coefficients Number of participating electrons: $n \qquad 1$ Stoichiometric coefficients: $\nu_{c,1i,ien} \qquad [-1]$ $\nu_{c,n} \qquad 0$ $\nu_{N} = -\left(\frac{n + \sum_{i=1}^{N-1} z_i \nu_i}{z_N}\right)$ $R_i = \frac{-\nu_{inc}}{n^c}$	/lim	1e5[A/m^2]	A/m'		
Number of participating electrons: $n \qquad 1$ Stoichiometric coefficients: $\nu_{L_ian} \qquad -1$ $\nu_{n=n} \qquad 0$ $\nu_{N} = -\left(\frac{n + \sum_{i=1}^{N-1} z_{i} \nu_{i}}{z_{N}}\right)$ $R_{i} = \frac{-\nu_{i} n_{c}}{n_{F}}$	i _{loc} =	$=\frac{l'expr}{1+\left \frac{l'expr}{l_{im}}\right }$			
$n \qquad 1$ Stoichiometric coefficients: $ \begin{array}{c} \nu_{z,L,i=n} & -1 \\ \nu_{z,n} & 0 \\ \nu_{N} = -\left(\frac{n + \sum_{i=1}^{N-1} z_{i} \nu_{i}}{z_{N}}\right) \\ R_{i} = \frac{-\nu_{i} n_{z}}{n_{F}} \end{array} $	▼ S	toichiometric Coefficients			
Stoichiometric coefficients: $\nu_{c,n} = \frac{1}{\nu_{c,n}}$ $\nu_{N} = \left(\frac{n + \sum_{i=1}^{N-1} z_i \nu_i}{z_N}\right)$ $R_i = \frac{-\nu_{ijoc}}{n^c}$	Num	ber of participating electrons:			
$\begin{aligned} \nu_{c,n} & -1 \\ \nu_{c,n} & 0 \\ \nu_{N} & = \left(\frac{n + \sum_{i=1}^{N-1} z_{i} \nu_{i}}{z_{N}} \right) \\ R_{i} & = \frac{-\nu_{i} i_{c}}{n^{c}} \end{aligned}$	n	1	1		
$ \begin{array}{c} \nu_{n} & 0 \\ \nu_{N} = -\left(\frac{n + \sum_{i=1}^{N-1} z_{i} \nu_{i}}{z_{N}}\right) \\ R_{i} = \frac{-\nu_{i} \rho_{c}}{\rho_{F}} \end{array} $	Stoic	hiometric coefficients:			
$\nu_N = -\left(\frac{n + \sum_{i=1}^{N-1} z_i \nu_i}{z_N}\right)$ $R_i = \frac{-\nu_{i \mid 0 \leq}}{n^{c}}$	$\nu_{c_{-}}$	i_ion -1	1		
$R_{i} = \frac{-\nu_{i} i_{loc}}{nF}$	ν _{c_n}	0	1		
18	ν _N =	$= -\left(\frac{n + \sum_{i=1}^{N-1} z_i \nu_i}{z_N}\right)$			
$\sum_{ox} \nu_{ox} Ox + ne^- \Rightarrow \sum_{red} \nu_{red} Red$	$R_i =$	$\frac{-\nu_{i} _{0c}}{nF}$			
$\nu_{\rm ox} < 0$ $\nu_{\rm red} > 0$	Σ.,	$ \nu_{ox} _{Ox} + ne^{-} \Rightarrow \sum_{red} \nu_{red} Red$ $\nu_{ox} < 0 \qquad \qquad \nu_{red} > 0$			

Variable	Value 6.01e ⁴	
c0 ⁺ _{Li} [mol/m ³]		
Kr [m ³ /(mol [*] s)]	0.9e ⁻⁸	
δ	0.18	
D ⁺ _{Li} [m ² /s]	$0.9e^{-15}$	
D _n [m ² /s]	5.1e ⁻¹⁵	
c _{Li-max} [mol/m ³]	2.33e ⁴	
D _{Li} [m²/s]	1.76e ⁻¹⁵	
apos	0.6	
k _{pos} [mol/m²/s]	5.1e ⁻⁴	
T [K]	298.15	
i1c [A/cm^2]	10e – 6	
aneg	0.5	
k _{neg} [mol/m^2/s]	1×10^{-2}	


Fig4. The SSB model was implemented using the operating parameters found in the COMSOL® library

Solid-State Battery Design and Simulation

Our Goal:

The goal of this study was to compare the voltage drop across different sized geometries on each of the battery cells when specific C-Rates were applied. When the maximum activity value is reached the voltage curve will reach zero, signalling that the electrode can no longer contain more ions.

To evaluate the effect of varying operating geometric sizes, three cases were simulated.

900nm-700nm

Solid State Battery Simulation Results

• Time-dependent simulations of a 2D model with increasing C-rates were successfully performed. These simulations considered the electrochemical reaction and diffusion of Li-ions and electrons in the electrolyte and solid Lithium ion the positive electrode. The results shown provide important information about the behavior of the Li-ion SSB cell when discharged at different current densities.

Observations:

- The team noticed that with the smaller positive electrode thickness, the maximal ionic activity is reached much quicker resulting in a faster discharge curve with any C-rate. This happens because the positive electrode has reached the maximum level of solid lithium ions it can contain.
- Another observation is that when the electrolyte width was decreased, the lithium ions travel faster to the electrode, making the discharge curve complete its cycle at 1600 seconds at a C-Rate of 1.6.

What This Tells Us

- A smaller electrode to electrolyte ratio means faster ionic transfer
 - Minimize the ratio without losing functionality
 - Verify findings in 3D
 - Delve into material options
 - Thin film and doping techniques
- Context for findings is needed
 - Numerical comparison to standard lithium ion
 - Effective meaning of discharge time in terms of battery usage

Future Research

- Materials testing
 - Graphene
 - \circ Glass
 - Magnesium
- Fabrication
 - Requires 3D design and testing
- Implementation
 - Simulation testing

Image courtesy of www.canadianbusiness.com

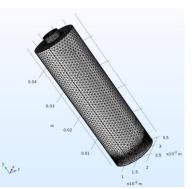


Image courtesy of www.scurion.ch

Questions?