

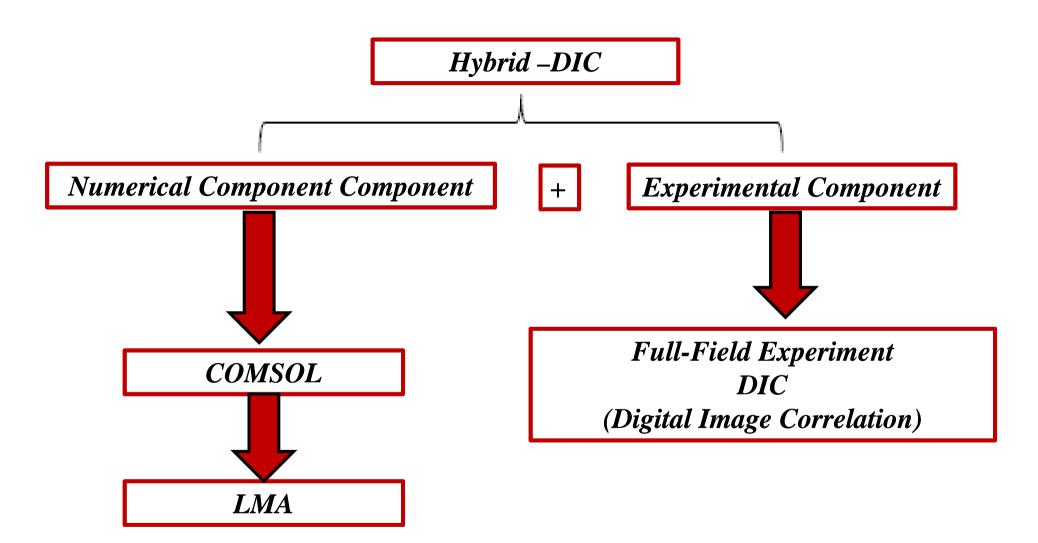
# Determination of Constitutive Properties using DIC-Displacement Data and U-FEM

A. A. Alshaya, R. I. Bourisli, J. M. Considine

#### Kuwait University – Kuwait Forest Products Laboratory, Madison

#### **OBJECTIVES AND MOTIVATION**

- Objective and Motivation
  - > Determines constitutive properties of a paperboard laminated composite.
- ➢Hybrid Approach
  - Experimental Components
    - ✓ Digital Image Correlation (DIC)
  - ➤ Numerical Component
    - ✓ COMSOL LiveLink
    - ✓ Levenberg-Marquardt Algorithm (LMA)
- ► Applications and Method Validation
  - Composite plate with circular notch Orthotropic




Perforated Sprockets



Engineering structures

#### Hybrid – Approach

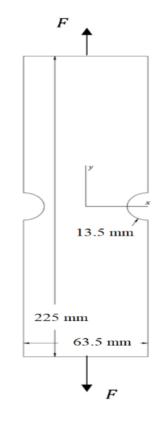


#### Problem Definition and governing Equation

The governing equations for anisotropic elasticity consist of

- 1- Equilibrium equations,
- 2- Strain-displacement relations (small deformations)
- 3- Stress-strain laws for linear anisotropic elastic solids,

$$\frac{\partial \sigma_{ij}}{\partial x_j} + f_i = 0, \qquad i = 1,2,3$$


$$\varepsilon_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \qquad i, j = 1,2,3$$

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}, \qquad i, j, k, l = 1,2,3$$

Where:

 $\sigma_{ij} = \sigma$  is stress tensor,  $\varepsilon_{ij} = \varepsilon$  is strain tensor,  $u_i = u$  is displacement vector,  $C_{ijkl}$  is the 4<sup>th</sup>-order stiffness tensor,  $f_i$  is the body forces.

15 equations with 15 unknown functions  $u_i$ ,  $\varepsilon_{ij}$ ,  $\sigma_{ij}$ , i, j = 1,2,3, in terms of three spatial coordinate variables  $x_i$ , i = 1,2,3.



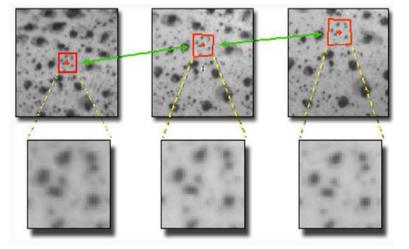
Vertically-loaded finite paperboard composite plate with circular side notches.

#### Plate Geometry

| Material Properties             |        | Plate Geometry            |      |  |
|---------------------------------|--------|---------------------------|------|--|
| $E_x = E_2$ (GPa)               | 2.12   | Notch radius, R (mm)      | 13.5 |  |
| $E_y = E_1 	ext{(GPa)}$         | 4.52   | Plate Length, L (mm)      | 225  |  |
| $G_{xy} = G_{12} \text{ (GPa)}$ | 1.27   | Plate Width, W (mm)       | 63.5 |  |
| $v_{xy} = v_{21}$               | 0.3838 | Plate thickness, $t$ (mm) | 0.31 |  |



Vertically-loaded finite paperboard composite plate with circular side notches.




#### **Digital Image Correlation**

- Contemporary, non-contacting, non-destructive experimental method.
- Provides displacement/strain info
- Speckle pattern
- Rapid data acquisition

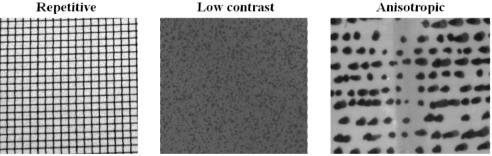
Tracking motion of speckle pattern by comparing gray scale value at a point (subset) in deformed and undeformed configuration

- Achievable DIC resolution depends on
  - ➤ camera resolution,
  - lens optical quality,
  - ➢ speckle size and quality.



DIC method to track gray value pattern in small subsets [1]

[1] Correlated Solutions [online]: http://www.correlatedsolutions.com/index.php/principle-of-digital-image-correlation

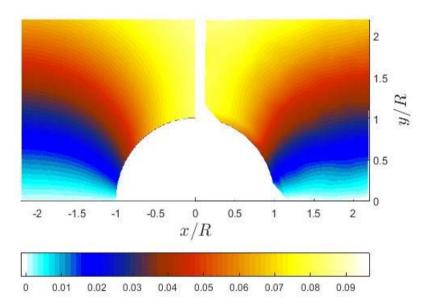

#### **DIC:** Test Preparation

• Speckle pattern has to be applied to the structure (Black and White Ultra-Flat paint)

Record images of specimen in its loaded and unloaded conditions using Vic-Snap software (by Correlated Solutions, Inc.).



• Speckle pattern must be non-repetitive (random), isotropic (not exhibit a bias in any orientation) and high contrast (show dark blacks and bright whites)




# **Technical Information**

| Parameter                | Setting                                                             |
|--------------------------|---------------------------------------------------------------------|
| Technique                | Stereo Image Correlation                                            |
| Cameras                  | The Grasshopper (Point Grey Research), Model GRAS-50S5M-C           |
|                          |                                                                     |
| Imaging sensor           | Sony ICX625 CCD, 2/3", 3.45 μm                                      |
| Lens                     | CM120 BK 15 COMPACT-0901 (focal ratio: 1.9 and focal length: 35 mm) |
|                          |                                                                     |
| Sensor/digitization      | 2448×2048 at 15 FPS                                                 |
| Lightening               | Ambient white light                                                 |
| Pixel to inch conversion | 1 pixel = 0.01 inch                                                 |
| Software                 | MatchID software.                                                   |
|                          |                                                                     |
| Subset, step             | 21, 10                                                              |
| Strain Resolution        | 0.005% (50 microstrain)                                             |
| 10/30/2018               | Kuwait University - Kuwait<br>University of Wisconsin–Madison 8     |

# **DIC** Data

- DIC MatchID software provided approximately 8,160 values of u and v
- Plate is geometrically and mechanically symmetrical about the vertical y-axes
- Zero vertical displacement was shifted to be at the horizontal middle of the plate.
- Averaging *v*-displacement data (cancel any asymmetry)



# Inverse Method Procedure

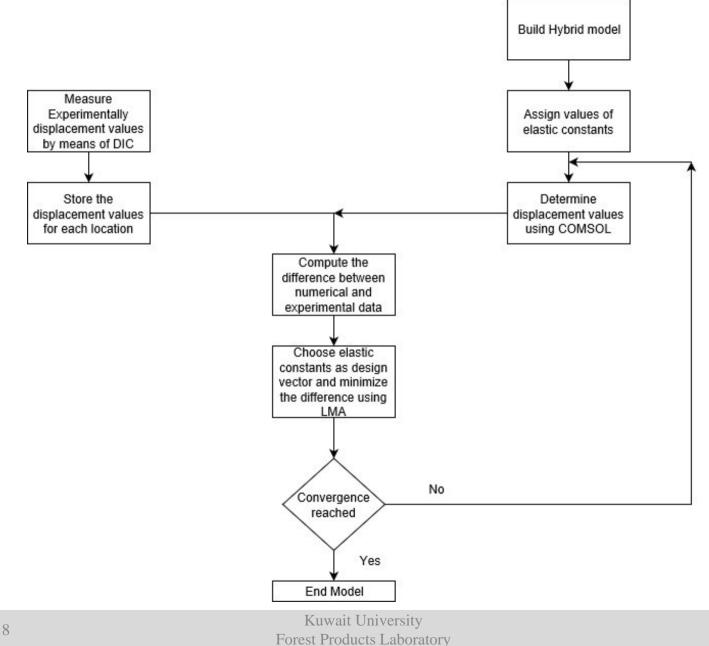
• Levenberg-Marquardt Algorithm

 $f(\hat{v}_{FEM}, P) = ||r||, \quad \text{where } r = \hat{v}_{DIC} - \hat{v}_{FEM}$ 

where  $\hat{v}_{FEM}$  and  $\hat{v}_{DIC}$  are vector containing nodal  $v^*$  displacement determined by FEM (COMSOL) and DIC, respectively

*P* is a vector containing the constitutive parameters,  $E_1$ ,  $E_2$ ,  $v_{12}$ ,  $G_{12}$ .

||r|| is the norm of r


$$P_{i+1} = P_i - (J^T J + \lambda \cdot \operatorname{diag}(J^T J))^{-1} J^T r \qquad \text{where } i \text{ is iteration number}$$

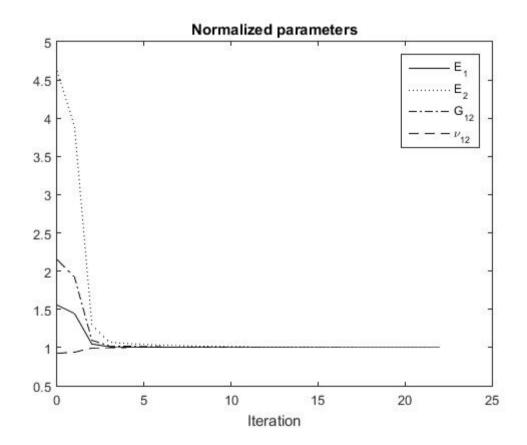
*J* and *J*<sup>*T*</sup> are Jacobian and Jacobian transpose, determined by backward difference,  $J_{m,n} = \frac{\partial r_m}{\partial P_n}$ *m* is number of nodal *S*<sup>\*</sup> values

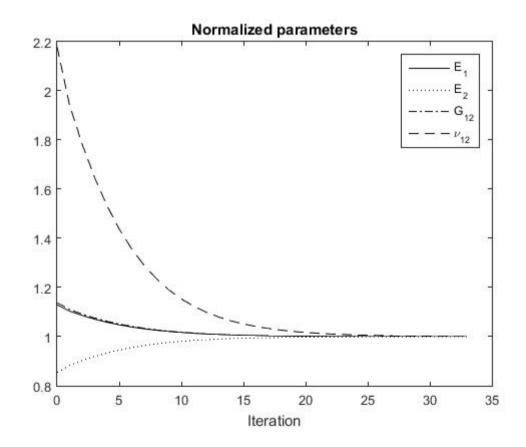
n is number of constitutive parameters (6 in this work)

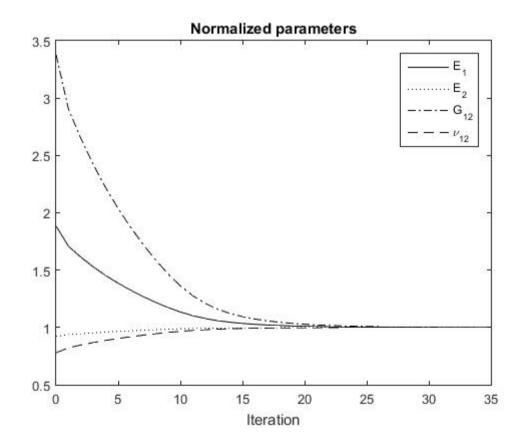
 $\lambda$  is non-negative damping factor, adjusted each iteration step, adjusts between Steepest Descent Method and Gauss-Newton Method

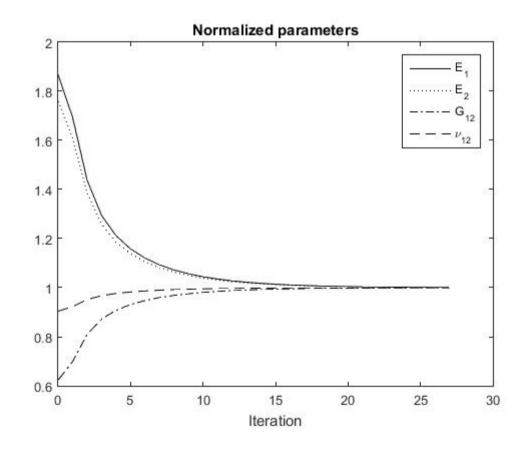
#### **Inverse Method Procedure**




### Inverse Method Procedure


• Initial Guesses


$$\begin{cases} \boldsymbol{E}_{\boldsymbol{x}}^{0} \\ \boldsymbol{E}_{\boldsymbol{y}}^{0} \\ \boldsymbol{G}_{\boldsymbol{x}\boldsymbol{y}}^{0} \\ \boldsymbol{\nu}_{\boldsymbol{x}\boldsymbol{y}}^{0} \end{cases} = \boldsymbol{E} \begin{cases} \boldsymbol{R}_{1}\boldsymbol{E}_{\boldsymbol{x}} \\ \boldsymbol{R}_{2}\boldsymbol{E}_{\boldsymbol{y}} \\ \boldsymbol{R}_{3}\boldsymbol{G}_{\boldsymbol{x}\boldsymbol{y}} \\ \boldsymbol{R}_{4}\boldsymbol{\nu}_{\boldsymbol{x}\boldsymbol{y}} \end{cases}$$

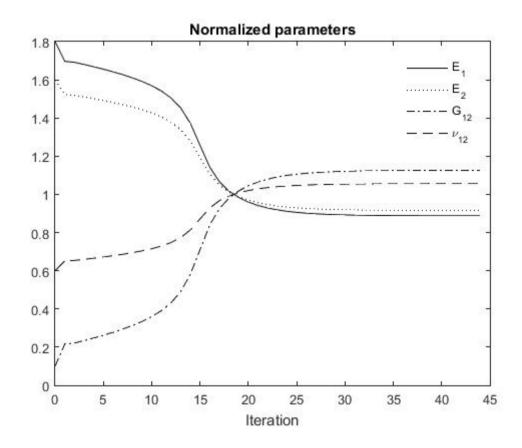

*E* is the maximum absolute random error (user specified), 50, 100, 200 and 400% were used

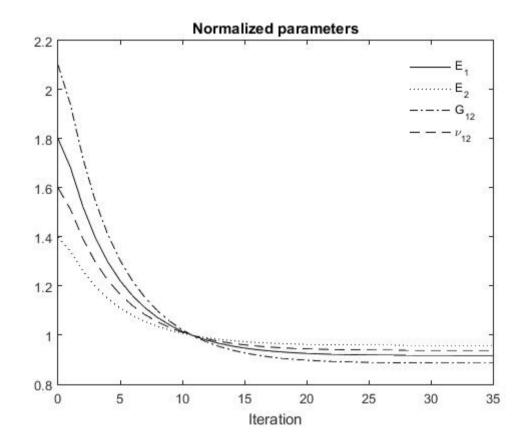
 $R_1, R_2, R_3$ , and  $R_4$  are independent generated random numbers ( $0 \le R_i \le 1, i = 1, 2, 3, 4$ )

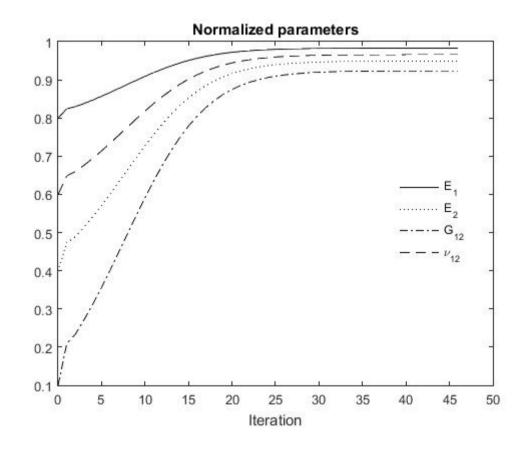


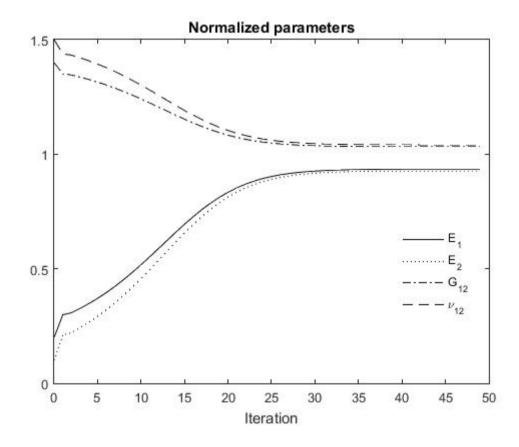

















Predicted values of constitutive properties of paperboard using inverse method and COMSOL LiveLink for different number of generated initial guesses

| # It. | Error (%) | $E_x$ (GPa)       | $E_y$ (GPa)       | $G_{xy}$ (GPa)    | $v_{xy}$            |
|-------|-----------|-------------------|-------------------|-------------------|---------------------|
| 10    | - 50      | $2.21 \pm 0.3110$ | $4.23 \pm 0.0769$ | $1.33 \pm 0.1787$ | $0.4007 \pm 0.0658$ |
| 20    |           | $2.20 \pm 0.3258$ | $4.26 \pm 0.1035$ | $1.26 \pm 0.1408$ | $0.3931 \pm 0.0293$ |
| 50    |           | $2.29 \pm 0.4498$ | $4.28 \pm 0.1283$ | $1.29 \pm 0.1802$ | $0.3928 \pm 0.0580$ |
| 100   |           | $2.14 \pm 0.3661$ | $4.29 \pm 0.1270$ | $1.27 \pm 0.2300$ | $0.3745 \pm 0.0865$ |
| 10    | 100       | $2.18 \pm 0.2426$ | $4.28 \pm 0.1151$ | $1.31 \pm 0.1553$ | $0.3702 \pm 0.0427$ |
| 20    |           | $2.19 \pm 0.5010$ | $4.19 \pm 0.3907$ | $1.33 \pm 0.1449$ | $0.3935 \pm 0.0634$ |
| 50    |           | $2.25 \pm 0.5233$ | $4.24 \pm 0.2705$ | $1.31 \pm 0.2294$ | $0.3936 \pm 0.0573$ |
| 10    | 200       | $1.94 \pm 0.3848$ | $5.59 \pm 2.9432$ | $1.62 \pm 0.5192$ | $0.4718 \pm 0.2119$ |
| 20    |           | $2.14 \pm 0.9159$ | $4.90 \pm 2.0482$ | $1.54 \pm 0.5450$ | $0.4519 \pm 0.1707$ |
| 50    |           | $2.21 \pm 0.7392$ | $4.97 \pm 2.0956$ | $1.38 \pm 0.6429$ | $0.4459 \pm 0.1879$ |
| 10    | 400       | $2.07 \pm 0.2670$ | $4.28 \pm 0.0820$ | $1.26 \pm 0.2541$ | $0.3685 \pm 0.0266$ |
| 20    |           | $2.42 \pm 1.3748$ | 4.35± 6.5064      | $2.69 \pm 2.1909$ | $0.7786 \pm 0.5229$ |
| 50    |           | $2.19 \pm 1.4226$ | 4.45± 6.9325      | $1.29 \pm 2.6975$ | $0.3685 \pm 0.5964$ |

Target values:  $E_x = 2.12$  GPa,  $E_y = 4.52$  GPa,  $G_{xy} = 1.27$  GPA,  $v_{xy} = 0.3838$ .

# Conclusion

- Determination of Constitutive Properties using
- COMSOL LiveLink
- Levenberg-Marquardt Algorithm
- One single measured displacement data
- Advantages:
- Direct use of single test to determine stresses and displacements
- Error less than 10%.
- Applicable for any loading and boundary conditions.



