

A Model of Concrete Carbonation Using Comsol Multiphysics®

B. Chinè¹, R. Cuevas H.², R. Jimenez S.¹, A. Rodriguez R.¹ 1. School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica 2. School of Construction Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica

Overview

Concrete carbonation

Physical model

Equations

Boundary conditions

Results

Conclusions

Concrete carbonation

- CO₂ permeates the porous and fractured structure of concrete.
- Establishes conditions of concrete degradation.
- Controls reinforcing bar corrosion and durability of the whole civil structure.
- May cause corrosion around reinforcing bars, causing deterioration of material and structure mechanical properties.

Figure 1. Carbonation of an OPC, validated also for pozzolanic cements [Papadakis et al, 1992]

Physical model

- 10 cm diameter and 20 cm height cylinders.
- Two base surfaces covered with aluminum foil to set up a radial diffusion process.

-19

 Pozzolanic cement MP/A-28 manufactured by Lafarge-Holcim. 20

Table 1. Chemical composition ofLafarge-Holcim MP/A-28 cement.

Table 2. Chemical composition of thepozzolanic addition.

Specie	Content (%)
SiO ₂ (Silicon dioxide)	83.6
Al ₂ O ₃ (Aluminum oxide)	0.2
Fe ₂ O ₃ (Iron dioxide)	1.6
CaO (Calcium oxide)	0.8
MgO (Magnesium oxide)	0.1
SO ₃ (Sulphur trioxide)	0.9
K ₂ O (Potassium oxide)	0.0
Na ₂ O (Sodium oxide)	0.2

Specie	Content (%)
MgO (Magnesium oxide)	2.19
SO ₃ (Sulphur trioxide)	2.51
C ₃ A (Tricalcium aluminate)	8.30
C ₃ S (Tricalcium silicate)	62.40
C ₂ S (Dicalcium silicate)	12.50
C ₄ AF (Tetracalcium aluminoferrite)	9.30

- Water to binder w/c and aggregate to binder a/c ratios were 0.52 and 4.17, respectively.
- Samples were cured for 90 days in a wet chamber at 23±2 °C and at relative humidity higher than 95%.

- Samples placed in accelerated carbonation chamber.
- Water is the solvent for the chemical reactions.
- CO₂ diffusion mechanism is set in the radial direction.
- Velocity of carbonation front depends on CO₂ effective diffusivity.
- Diffusion coefficient is a function of water/cement (w/c) ratio and degree of saturation of pores with water [Papadakis *et al*, 1989; Papadakis *et al*, 1992].
- XRD confirms calcium aluminosilicate presence in the pozzolanic cement and of anorthite CaAl₂Si₂O₈ in sands used to prepare the concrete blend. No Ca(OH)₂ was detected.

Mathematical model

- Comsol Multiphysics[®] Chemical Reaction Engineering Module.
- Transient, bi-dimensional diffusion mechanism for species transport.
- Convective processes are neglected, isothermal conditions are assumed.
- Chemical species are considered to be diluted.
- Porosity and water saturation in concrete are considered constant.
- Results are validated by comparing with experimental testing.
- We assume a carbonation reaction in the liquid phase between calcium aluminosilicates and CO₂ gas:

 $CO_2 + CaAl_2Si_2O_8 + 2H_2O = CaCO_3 + AlSi_2O_5(OH)_4$ [Oelkers *et al*, 2008] (2)

Equations

 The partial differential equation for the mass conservation of a chemical specie *i* in a time dependent, diffusion transport process in a liquid of a partially filled saturated porous media is:

$$\frac{\partial c_i}{\partial t} + \nabla \cdot (-D\nabla c_i) = R_i \tag{2}$$

For the reacting specie i of Eq. 2, c_i is its concentration,

D is the diffusion coefficient and R_i is the reaction

rate expression.

• The above equation is obtained by writing the conservation of the mass flux vector N_i of the specie *i*, starting with Fick's 1st law for diffusion of species in a diluted solution, and in absence of convective mechanisms:

$$-D\nabla c_i = N_i \tag{3}$$

Table 3. Molar masses, densities and diffusion
coefficient of the reacting chemical species of Eq. 1.

Specie	Molar	Density	Diffusion
	mass	(kg/m^3)	coeffic.
	(g/mol)		(m^2/s)
$CO_2(*)$ (gas)	44.01	p*0.044	1x10 ⁻⁸
		01/(8.31	
		451*T)	
CaAl ₂ Si ₂ O ₈	278.20	2740	1x10 ⁻⁹
(solid)			
H2O (liquid)	18.02	1000	solvent
CaCO ₃ (solid)	100.09	2710	1x10 ⁻⁹
AlSi ₂ O ₅ (OH) ₄	258.16	2600	1x10 ⁻⁹
(solid)			

(*) CO_2 is assumed to be an ideal gas at pressure p (Pa) and temperature T(K).

- Conservation equation is written in term of concentration per water volume of the porous media (Comsol Multiphysics[®] - Partially Saturated Porous Media definition).
- The porosity *p* is 0.25, water saturation grade *s* is 0.27 (relative humidity in the accelerated carbonation chamber is 65%).
- Therefore liquid volume fraction is $s \Theta = 0.0675$.
- CO₂ diffusion coefficient is assumed as 1x10⁻⁸ m²/s and the CO₂ concentration in the accelerated carbonation chamber as 25% in volume.
- Reaction rate and the rate constants of chemical reactions are set with the standard values of Comsol Multiphysics[®] database.
- Temperature is 25 °C and the pressure is 1 atm.

Boundary conditions

- Set CO₂ concentration in vertical wall of sample (r = R) as 10.22 mol/m³, obtained from %CO₂ concentration in the carbonation chamber.
- For the same wall, boundary conditions for the other dilutes species is mass flux equal to zero.
- Base surfaces are set as no mass flux for all chemical species.
- Axial symmetry is used on *z* axis of the concrete sample.
- Initial conditions for the species concentrations in the liquid fraction are 280 mol/m³ for CaAl₂Si₂O₈ and zero for other reacting species.

Figure 3. Concentration profiles of reacting species after 28 days of carbonation (25% CO 2, 65% RH, 25°C).

Figure 4. Concentration profiles of CO_2 in the concrete, for the carbonation times of Table 4 (25% CO_2 , 65% RH, 25°C).

Figure 6. Carbonation depth in a sample of concrete, after 28 days of accelerated carbonation.

Table 4. Carbonation depth in the concrete.

Carbonation (days)	Experimental values of carbonation depth (mm)	Computational values of carbonation depth (mm)
2	4	3.5
4	6	4.5
8	8	6.5
16	10	9.5
28	12	12.5
44	15	17.0

Figure 7. Carbonation depth with time in the concrete sample.

time (days)

Conclusions

- A time dependent carbonation process of a concrete manufactured with pozzolanic cement has been modeled by using the Chemical Reaction Engineering Module of Comsol Multiphysics[®].
- The numerical results give the carbonation front in time and species concentration in the carbonated concrete.
- Validation of results is made by comparing them with experimental testing in an accelerated carbonation chamber, under controlled conditions of relative humidity, CO₂ concentration and temperature.
- Computational results obtained with Comsol Multiphysics[®] are encouraging for a next study which will also include steel bar corrosion.

References

- [1] V.G. Papadakis, C.G. Vayenas and M.N. Fardis, A reaction engineering approach to the problem of concrete carbonation, *American Inst. of Chemical Engineers Journal*, **35**, N.10, 1639-1650 (1989).
- [2] V.G. Papadakis, C.G. Vayenas and M.N. Fardis, Experimental investigation and mathematical modeling of the concrete carbonation problem, *Chemical Engineering Science*, **46**, N.5/6, 1333-1338 (1991).
- [3] V.G. Papadakis, C.G. Vayenas and M.N. Fardis, Fundamental modeling and experimental investigation of concrete carbonation, *ACI Materials Journal*, **88**, N.4, 363-373 (1991).
- [4] V.G. Papadakis, C.G. Vayenas and M.N. Fardis, Hydration and carbonation of pozzolanic cements, *ACI Materials Journal*, **89**, N.2,
 119-130 (1992).
- [5] A.V. Saetta, B.A. Schrefler and R.V. Vitaliani, The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide
 flow through porous materials, *Cement and Concrete Research*, 23, 761-772 (1993).
- [6] A.V. Saetta, B.A. Schrefler and R.V. Vitaliani, 2-D Model for carbonation and moisture/heat flow in porous materials, *Cement and Concrete Research*, **25**, 1703-1712 (1995).

- [7] F.A. Radu, A. Muntean, I.U. Pop, N. Suciu and O. Kolditz, A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosity, *Journal of Computational and Applied Mathematics*, **246**, 74-85 (2013).
- [8] Y. Lu, E. Garboczi, D. Bentz and J. Davis, Modeling of Chloride Transport in Cracked Concrete: a 3-D image-based microstructure simulation, *Proceedings of the 2012 COMSOL Conference*, Boston (USA).
- [9] D. P. Bentz, E. J. Garboczi, Y. Lu, N. Martys, A.R. Sakulich and W.J. Weiss, Modeling of the influence of transverse cracking on chloride penetration into concrete, *Cement and Composites*, **38**, 65-74 (2013).
- [10] P. Ghods, K. Karadakis, O.B. Isgor and G. McRae, Modeling the chloride-induced corrosion initiation of steel rebar in concrete, *Proceedings of the 2009 COMSOL Conference*, Boston (USA).
- [11] E. H. Oelkers, S. R. Gislason. and J. Matter, Mineral carbonation of CO₂, *Elements*, 4, 333-337 (2008).
- [12] Comsol AB, Chemical Reaction Engineering Module, *User's Guide*, Version 5.3a (2017).

Acknowledgements

• The authors gratefully acknowledge the financial aid provided by the Vicerrectoria de Investigación y Extensión of the Instituto Tecnológico de Costa Rica, through the project 1490017.