Multiphysics modelling of photo-polymerization in DLP printing process and validation

K. Gao, B.L.J. Ingenhut, A.P.A. van de Ven, F.O. Valega Mackenzie, A.T. ten Cate

Brightlands Materials Center
Materials Solutions, TNO
The Netherlands
Brightlands Materials Center

- **Public-private partnership** initiative founded March 19, 2015 by TNO and the Province of Limburg.
- Focusing on **sustainable** innovations in **polymers**.
- Three programs driven by **application challenges**, together with universities and industry partners.
Additive Manufacturing Program – Focus

Multi-material photopolymer for new (responsive) functionalities

polymers with continuous fibers for reinforcement and sensing
Materials Challenges

- Quality: warpage and residual stress, ...
- Stability: structural performance at high temperature and long term behavior, ...
- Multi-material, 4D printing and etc.

Warpage in products
Objective

To use *modeling and simulation* in order to link *materials* and *process* for further control in *SLA/DLP printing*

- Models are needed to understand and improve:
 - *Process conditions* to meet or contribute to the object specifications
 - *Material compositions* to meet or contribute to the object specifications
Photo-polymerization in SLA/DLP

- SLA: Stereolithography Apparatus; DLP: Digital Light Printing
- The photo-polymerization is the core of SLA/DLP technology.

The double-bond conversion can be used to present the reaction.
Multiphysics Modelling

Kinetic
1 -> R
Propagation
Termination

Thermal

Material properties + shrinkage

Mechanical

\(\frac{\partial [M]}{\partial t} = -A[M]\sqrt{t} \)
M.D. Goodner and C.N. Bowman, 2002

Heat Transfer in Solids (ht)
- Domains
 - Solid 1
 - Initial Values 1
 - Heat Transfer in Solids - Material
 - Heat Source - Light
 - Heat Source - Reaction

Solid Mechanics (solid)
- Domains
 - Linear Elastic Material 1
 - Initial Values 1
 - Linear Elastic Material - Material

Photopolymerization, no diffusion (dode)
- Domains
 - Distributed ODE 1
 - Initial Values 1

Beer-Lamber Law (cdeq)
- Domains
 - Convection-Diffusion Equation 1
 - Initial Values 1

Multiphysics
- Thermal Expansion 1 (te1)
- Temperature Coupling 1 (tc1)
- Thermal Expansion 2 (te2)
Material Characterization

- Parameters of the kinetics model are obtained based on the experiments.

Material Contents

<table>
<thead>
<tr>
<th>Property</th>
<th>Variable</th>
<th>Value</th>
<th>Unit</th>
<th>Property group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>rho</td>
<td>rho_t</td>
<td>kg/m³</td>
<td>Basic</td>
</tr>
<tr>
<td>Heat capacity at constant pressure</td>
<td>Cp</td>
<td>Cp_t</td>
<td>J/(kg·K)</td>
<td>Basic</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>k_iso ; k_i ; k_t</td>
<td></td>
<td>W/(m·K)</td>
<td>Basic</td>
</tr>
<tr>
<td>Coefficient of thermal expansion</td>
<td>alpha_is ; alpha_t</td>
<td></td>
<td>1/K</td>
<td>Basic</td>
</tr>
<tr>
<td>Bulk modulus</td>
<td>K</td>
<td>K_m_t</td>
<td>N/m²</td>
<td>Bulk modulus and shear moduli</td>
</tr>
<tr>
<td>Shear modulus</td>
<td>G</td>
<td>G_m_t</td>
<td>N/m²</td>
<td>Bulk modulus and shear moduli</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>nu</td>
<td>nu_t</td>
<td>1</td>
<td>Basic</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>E</td>
<td>E_m_t</td>
<td>Pa</td>
<td>Basic</td>
</tr>
</tbody>
</table>

In-situ FTIR

![Conversion vs. time graph](conversion_graph.png)

Rheometer

![Rheometer and shear modulus graph](rheometer_graph.png)
Experimental Validation

Adjust the exposure time of the last layer.
Conclusions and Outlook

- With COMSOL, a Multiphysics model was developed to investigate effects of **process conditions** and **material compositions** on **deformation** and **residual stress** of a **multi-layered DLP-printed** product.
- Required parameters can be obtained based on commercial-available experimental set-up. It gives a possibility for **standardization**.
- Validation showed a **good agreement** if a non-linear material model (plasticity) was adopted.
- We are
 - improving process conditions and new designs based on the developed model.
 - improving the accuracy and the computational cost of the model.
 - applying this model to other photo-polymers.
 - ...
Thank you for your attention!