

Numerical Modelling of Viscous Damping for Acoustic Resonances of Suspended Microparticles

<u>Thierry Baasch*</u>, Jonas Fankhauser and Jürg Dual Institute for Mechanical Systems ETH Zurich *baasch@imes.mavt.ethz.ch

Why acoustics and particles?

The particle motion can be controlled by acoustic forces.

[1] Baasch, T., Leibacher, I., & Dual, J. (2017) The Journal of the Acoustical Society of America, 141(3), 1664-1674

[2] Courtesy of W. Dietze & I. Leibacher

[3] Garbin, A., Leibacher, I., Hahn, P., Le Ferrand, H., Studart, A., & Dual, J. (2015). The Journal of the Acoustical Society of America, 138(5), 2759-2769.

[4] Schwarz, Thomas. Rotation of particles by ultrasonic manipulation. Diss. 2013.

Motivation: At high frequencies particle resonances can be excited

The acoustic radiation force acting on a PMMA particle. Multiple resonances can be observed.

Habibi, Ruhollah, Citsabehsan Devendran, and Adrian Neild. "Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave." *Lab on a Chip* 17.19 (2017): 3279-3290.

Motivation: At high frequencies particle resonances can be excited

Habibi, Ruhollah, Citsabehsan Devendran, and Adrian Neild. "Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave." *Lab on a Chip* 17.19 (2017): 3279-3290.

Former results were obtained without considering the viscous damping!

Former results were obtained without considering the viscous damping!

Project goals

Understanding the influence of the viscosity on:

- The stored energy,
- the acoustic radiation force,

for an acoustically excited particle close to resonance.

Three different FEM (Comsol) models are used:

Inviscid Model:	Radiation losses, computationally cheap
Viscous Model:	Radiation & viscous losses, computationally expensive
Loss Factor Model:	Radiation & viscous losses, computationally cheap

Setup: Particle placed in standing wave

- 10 µm radius polystyrene particle
- One-dimensional standing wave.
- Placed between pressure and velocity node.

FEM Setup

- Simple symmetrical setup
- Viscous boundary layer requires many mesh elements

Particle vibrations for the inviscid fluid

Particle vibrations for the inviscid fluid

Multiple resonances can be observed

Viscosity adds damping and mass to the vibration mode

Viscous boundary layer

The viscous boundary layer (BL)

Adds **mass** and **damping** to the vibration.

The added **mass** and **damping** can be approximated analytically if:

- BL thickness smaller than wavelength, δ << λ.</p>
- BL thickness smaller than body curvature, δ << r.</p>

Fig. The tangential velocity profile in the viscous boundary layer for a moving wall and resting external fluid.

The added mass and loss factor

Added Mass:

Loss factor [1]:

The particle density ρ_p is changed to

$$\rho^* = \rho_p (1 + \phi_\rho) \text{ with}$$

 $\phi_\rho = \frac{\delta \rho_f}{4E_{\text{kin}}} \int_S < v_{\text{Diff}}^2 > dS.$

The damping is included in the complex youngs modulus E^* :

$$E^* = E_p(1 + i\phi_v)$$
 with

$$\phi_{\nu} = \frac{o\rho_f}{4E_{\text{strain}}} \int_{S} < v_{\text{Diff}}^2 > dS.$$

<u>Algorithm</u>

- 1. Inviscid simulation.
- 2. Acquire v_{Diff}^2 , T_{kin} and E_{st} .
- 3. Calculate ϕ_{ρ} and ϕ_{ν} .
- 3. Simulate again with **added mass** and **loss factor**.

[1] Hahn, Philipp, and Jurg Dual. "A numerically efficient damping model for acoustic resonances in microfluidic cavities." *Physics of Fluids* 27.6 (2015): 062005.

The results for the approximate model

The results for the approximate model

Outlook

- Investigate thermal losses.
- Calculate the acoustic radiation force between multiple particles.
- Incorporate acoustic streaming.

Thank you!

Scattered power

Loss Factors

Thierry Baasch | 29.08.2018 | 23

Motivation: Calculating the particle trajectories at high frequencies

One-cell-per-(acoustic)-well

[1] Collins, D. J., Morahan, B., Garcia-Bustos, J., Doerig, C., Plebanski, M., & Neild, A. (2015). *Nature communications*, *6*.

[2] Baasch, T., and Jürg Dual. *The Journal of the Acoustical Society of America* 143.1 (2018): 509-519.