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Numerical Modelling of Viscous Damping for 
Acoustic Resonances of Suspended Microparticles
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Why acoustics and particles?

The particle motion can be controlled by acoustic forces.

1D focussing of
glass particles 2D focussing

focussing of
alumina discs

rotation of
particle clumps
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[2] Courtesy of W. Dietze & I. Leibacher
[3] Garbin, A., Leibacher, I., Hahn, P., Le Ferrand, H., Studart, A., & Dual, J. (2015). The Journal of the Acoustical Society of America, 138(5), 2759-2769.
[4] Schwarz, Thomas. Rotation of particles by ultrasonic manipulation. Diss. 2013.

[3][1] [2] [4]



||

Habibi, Ruhollah, Citsabehsan Devendran, and Adrian Neild. "Trapping and patterning of large particles and cells in a 1D 
ultrasonic standing wave." Lab on a Chip 17.19 (2017): 3279-3290.
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Motivation: At high frequencies particle
resonances can be excited

The acoustic radiation
force acting on a 
PMMA particle. 
Multiple resonances
can be observed.
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Motivation: At high frequencies particle
resonances can be excited

Fig. The acoustic
radiation force acting
on a PMMA particle. 
Multiple resonances
can be observed.

Viscosity is neglected!
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Former results were obtained without
considering the viscous damping!
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Former results were obtained without
considering the viscous damping!

Influence of viscosity on the
force amplitude is neglected!
Unfortunately, including the
damping is computationally

expensive...
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Understanding the influence of the viscosity on:
 The stored energy,
 the acoustic radiation force,
for an acoustically excited particle close to resonance.

Three different FEM (Comsol) models are used:
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Project goals

Inviscid Model: Radiation losses, computationally cheap
Viscous Model: Radiation & viscous losses, computationally expensive
Loss Factor Model: Radiation & viscous losses, computationally cheap
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 10 μm radius polystyrene particle
 One-dimensional standing wave.
 Placed between pressure and velocity node.
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Setup: Particle placed in standing wave
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 Simple symmetrical setup
 Viscous boundary layer requires many mesh elements
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FEM Setup
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Particle vibrations for the inviscid fluid
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Particle vibrations for the inviscid fluid
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Multiple resonances can be observed
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Viscosity adds damping and mass to the
vibration mode
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Mode Shapes for
the inviscid case
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Displacement
amplitude

Pressure
amplitude
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Viscous boundary layer

Velocity
amplitude

pressure

Displacement
amplitude
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Adds mass and damping to the
vibration.

The added mass and damping
can be approximated analytically
if: 
 BL thickness smaller than

wavelength, δ << λ. 
 BL thickness smaller than

body curvature, δ << r. 
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The viscous boundary layer (BL)

Fig. The tangential velocity profile in the
viscous boundary layer for a moving wall 
and resting external fluid.
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Added Mass:

The particle density ௣ߩ is changed  
to 

∗ߩ ൌ ௣ߩ 1 ൅ ߶ఘ with

߶ఘ ൌ
ఋఘ೑
ସாౡ౟౤

׬ ൏ ୈ୧୤୤ଶݒ ൐ ݀ܵௌ .

Loss factor [1]:

The damping is included in the
complex youngs modulus :∗ܧ

∗ܧ ൌ ௣ሺ1ܧ ൅ ݅߶஝ሻ with

߶ఔ ൌ
ఋఘ೑

ସா౩౪౨౗౟౤
׬ ൏ ୈ୧୤୤ଶݒ ൐ ݀ܵௌ .
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The added mass and loss factor

Algorithm
1. Inviscid simulation.
2. Acquire ୈ୧୤୤ଶݒ , ୩ܶ୧୬ and ܧୱ୲. 
3. Calculate ߶ఘ and ߶ఔ.
3.  Simulate again with added mass and loss factor. 

[1] Hahn, Philipp, and Jurg Dual. "A numerically efficient damping model for acoustic resonances 
in microfluidic cavities." Physics of Fluids 27.6 (2015): 062005.
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The results for the approximate model
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The results for the approximate model
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 Investigate thermal losses.

 Calculate the acoustic radiation force between multiple 
particles.

 Incorporate acoustic streaming.
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Outlook



Thank you!
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Scattered power
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Loss Factors



|| 29.08.2018 24

Motivation: Calculating the particle trajectories
at high frequencies

One-cell-per-(acoustic)-well
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