ELT M4 Adaptive Mirror Actuator: Magnetic Optimization and Future Developments

C. Del Vecchio¹ R. Briguglio¹ M. Xompero¹ A. Riccardi¹ G. Agapito¹ S. Barmada² L. Sani² R. Biasi³ D. Gallieni⁴

¹INAF–OAA, Firenze, Italy ²DESTEC–Unipi, Pisa, Italy ³Microgate, Bolzano, Italy ⁴ADS International, Valmadrera (LC), Italy

COMSOL CONFERENCE 2018 LAUSANNE

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

Outline

3 Dynamics• Open-loop• Closed-loo

Outline

3 Dynamics• Open-loop• Closed-loop

Outline

- AO Principle
- Motivation

Oynamics

- Open-loop
- Closed-loop

3 Dynamics• Open-loop

Closed-loop

AO Principle Motivation

Compensating the Atmospheric Turbulence The Control System Concept

INAE - Arcet

3 Dynamics• Open-loop

Closed-loop

AO Principle Motivation

Adaptive Optics on board the Telescope From .911/8.4m [Riccardi et al., 2004] to 2.6/39.3m [Vernet et al., 2012]

The Device The Magnetic Circuit of the Voice-Coil Actuator

The Device The Magnetic Circuit of the Voice-Coil Actuator

三日 のへの

The Real Actuator The Specs

4	-8-	
	1-100-	
INAE	Arcote	

outer mag radii	2.1 mm and 6.1 mm
inner mag radius	2 mm
mag height	4.2 mm
coil radii	2.3 mm and 7.4 mm
coil height	3.3 mm
rms force (turbulence correction)	0.363 N
max force (static)	0.36 N
max force (dynamic)	1.27 N
stroke (mechanical)	$\pm 200\mu m$
gap (magnet-to-coil)	400 µm
bandwidth	1 kHz
typical inter-actuator spacing	26 mm
typical mobile mass	$\leq 10 \text{ g}$

The Driving Parameter The Efficiency Definition

The preliminary Results $\varepsilon = \varepsilon(I,z)$ and $K_f = K_f(I,z)$

The preliminary Results $\varepsilon = \varepsilon(I,z)$ and $K_f = K_f(I,z)$

10/23

The preliminary Results $\varepsilon = \varepsilon(I,z)$ and $K_f = K_f(I,z)$

$\left(\text{if I} \le 1, \quad \Psi = \text{const} \rightsquigarrow \epsilon \text{ and } K_{f} \text{ are constants} \right)$

Optimization: $\epsilon = \epsilon(\beta, q_i, q_p)$

What Affects What, with and without Iron

11/23

Optimization: $\epsilon = \epsilon(\beta, q_i, q_p)$ What Affects What, with and without Iron

parameter	range	result
β	from 30° to 45°	\checkmark
q _i (PM material)	3 types	$rac{\partialarepsilon}{\partial q_i}pprox 0$
q _i (iron material)	3 types	$rac{\partialarepsilon}{\partial q_p}pprox 0$

11/23

Optimization: $\epsilon = \epsilon(\beta, q_i, q_p)$ What Affects What, with and without Iron

Optimization outcome

•
$$\frac{\partial \varepsilon}{\partial \beta} = 0 @ \beta = 38.2^{\circ} \text{ to } 38.7^{\circ}$$

•
$$\varepsilon \ge 1 \,\mathrm{NW}^{-1/2}$$
 with most materials

• Adding the iron pot increases ε by few %

A By-product of Statics Computing Inductance as $\frac{d\lambda}{dl}$

A By-product of Statics Computing Inductance as $\frac{d\lambda}{dI}$

Obtaining a *real* Physics Modifying a Comsol Definition

P _{inp}					
P_{Cu}	P_{Fe}	P _{mag}	P_{mag} $P_{iner} + P_{vis} + P_{spr}$		
I^2R	$Q = \int_{V_{Fe}} \mathcal{J}_{Fe}^2 \rho_{Fe} dV$	$LI\frac{dI}{dt}$	$P_{kin} = K_b \frac{dz}{dt} I = K_f I \frac{dz}{dt}$		
I ² R V _{ind} I					
$V_{ind} = \frac{Q}{I} + L\frac{dI}{dt} + K_b\frac{dz}{dt} = V_Q + \frac{d\lambda}{dt}$					
$\lambda = 2\pi \frac{N}{S} \int_{S} A_{\varphi} r dS \equiv \text{comsol definition}$					
$V_Q = \frac{2\pi}{I} \int \mathcal{J}_{\varphi} E_{\varphi} r dS$ to be added into comsol					

A suitable Step Function Making the *Step* continuous up to its 4th Derivative

Preliminary Runs

Validating the Implementation: $I(t) = I_0 \Gamma(t)$, with $t_s = 5$ ms, $I_0 = 10$ mA

Preliminary Runs

Validating the Implementation: $I(t) = I_0 \Gamma(t)$, with $t_s = 5$ ms, $I_0 = 10$ mA

The open loop outcome

- The Power Balance Is Satisfied
- iron-type losses wrt to total power @ 3.8 mm s⁻¹
 - 12.9% w/ iron
 - 2.5% w/o iron

Closed Loop Implementation

Data from Statics and Matlab trial-and-error Run

C(s)	$K_p + sK_d + \frac{1}{s}K_i$	$I(t) = K_p \epsilon(t) + K_d \frac{d\epsilon(t)}{dt} + K_i \int_0^t \epsilon(t) dt$
P(s)	$(m+m_o)s^2+cs+k$	$(m+m_o)rac{d^2z}{dt^2}+crac{dz}{dt}+kz$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Closed Loop Implementation Data from Statics and Matlab trial-and-error Run

$\begin{array}{c cccc} t_s & 0.8 \mathrm{ms} & \mathrm{settling time} \\ \hline t_s & 1 \mathrm{\mu m} & \mathrm{set point} \\ \hline K_f & 3.547 \mathrm{N} \mathrm{A}^{-1} & \mathrm{force \ constant} \\ \hline K_p & 3.5 \times 10^{-7} \mathrm{A} \mathrm{m}^{-1} & \mathrm{proportional \ gain} \\ \hline K_d & 600 \mathrm{A} \mathrm{s}^{-1} \mathrm{m}^{-1} & \mathrm{derivative \ gain} \\ \hline K_i & 1 \times 10^{10} \mathrm{A} \mathrm{m}^{-1} \mathrm{s}^{-1} & \mathrm{integral \ gain} \\ m & 5.003 \times 10^{-3} \mathrm{kg} & \mathrm{mobile \ mass^1} \\ 3.787 \times 10^{-3} \mathrm{kg} & \mathrm{mobile \ mass^3} \\ \hline m_0 & 1 \times 10^{-3} \mathrm{kg} & \mathrm{glass \ mass^3} \\ \hline \end{array} $				-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _s	0.8 ms	settling time	
K_f $3.547 \mathrm{N}\mathrm{A}^{-1}$ force constant(1) K_p $3.5 \times 10^{-7} \mathrm{A}\mathrm{m}^{-1}$ proportional gain(2) K_d $600 \mathrm{A}\mathrm{s}^{-1}\mathrm{m}^{-1}$ derivative gain(2) K_i $1 \times 10^{10} \mathrm{A}\mathrm{m}^{-1}\mathrm{s}^{-1}$ integral gain(3) m $5.003 \times 10^{-3} \mathrm{kg}$ mobile mass ¹ (3) m_0 $1 \times 10^{-3} \mathrm{kg}$ glass mass ³ (4)	z_s	1 µm	set point	
$\begin{array}{c cccc} K_p & 3.5 \times 10^{-7} \mathrm{A m^{-1}} & \mathrm{proportional gain} \\ \hline K_d & 600 \mathrm{A s^{-1} m^{-1}} & \mathrm{derivative gain} \\ \hline K_i & 1 \times 10^{10} \mathrm{A m^{-1} s^{-1}} & \mathrm{integral gain} \\ \hline m & 5.003 \times 10^{-3} \mathrm{kg} & \mathrm{mobile mass^1} \\ 3.787 \times 10^{-3} \mathrm{kg} & \mathrm{mobile mass^2} \\ \hline m_0 & 1 \times 10^{-3} \mathrm{kg} & \mathrm{glass mass^3} \end{array} $ $\begin{array}{c} (2) \\ w/o \ \mathrm{iron} \\ (3) \\ \mathrm{typical} \\ \mathrm{div} \\ \mathrm{air gap} \end{array}$	K _f	$3.547{ m N}{ m A}^{-1}$	force constant	(1) w/ iron
K_d $600 \mathrm{A}\mathrm{s}^{-1}\mathrm{m}^{-1}$ derivative gain(2) K_i $1 \times 10^{10} \mathrm{A}\mathrm{m}^{-1}\mathrm{s}^{-1}$ integral gainw/o iron m $5.003 \times 10^{-3} \mathrm{kg}$ mobile mass ¹ (3) $3.787 \times 10^{-3} \mathrm{kg}$ mobile mass ² (4) m_0 $1 \times 10^{-3} \mathrm{kg}$ glass mass ³	Kp	$3.5 imes 10^{-7} \mathrm{A} \mathrm{m}^{-1}$	proportional gain	
K_i $1 \times 10^{10} \mathrm{A}\mathrm{m}^{-1}\mathrm{s}^{-1}$ integral gain(3) m $5.003 \times 10^{-3} \mathrm{kg}$ mobile mass^1(3) m_0 $3.787 \times 10^{-3} \mathrm{kg}$ mobile mass^2(4) m_0 $1 \times 10^{-3} \mathrm{kg}$ glass mass^3(4)	K _d	$600\mathrm{As^{-1}m^{-1}}$	derivative gain	(2) w/o iron
$m \begin{bmatrix} 5.003 \times 10^{-3} \text{ kg} & \text{mobile mass}^1 & \text{typical} \\ 3.787 \times 10^{-3} \text{ kg} & \text{mobile mass}^2 & (4) \\ m_0 & 1 \times 10^{-3} \text{ kg} & \text{glass mass}^3 & (4) \\ \end{bmatrix}$	K _i	$1\times 10^{10}Am^{-1}s^{-1}$	integral gain	
$\begin{array}{c cccc} m & & & \\ \hline m & & & 3.787 \times 10^{-3} \text{kg} & \text{mobile mass}^2 & & & \\ \hline m_0 & & & 1 \times 10^{-3} \text{kg} & & & \text{glass mass}^3 & & & \\ \hline \end{array} \tag{4} \\ air \text{gap} \end{array}$	m	$5.003 imes10^{-3}\mathrm{kg}$	mobile mass ¹	(3) typical
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$3.787 imes10^{-3}\mathrm{kg}$	mobile mass ²	
an gap	m_0	$1 imes 10^{-3} \mathrm{kg}$	glass mass ³	(4) air gap
c 10 N s m ⁻¹ damping coefficient ⁴	с	$10 { m N s m^{-1}}$	damping coefficient ⁴	un gap
k 1 × 10 ⁶ N m ⁻¹ glass stiffness ³	k	$1 imes 10^6Nm^{-1}$	glass stiffness ³	

Closed Loop Results The Current and Position Responses

(ロ) (部) (注) (注) (注) (の)

Closed Loop Results The Power Budget

20/23

Closed Loop Results The Basis for the Up-coming Dynamics

The closed loop outcome

- The Actuator Supplied the Requested Stroke within the Requested (Short!) Time
- the max iron-type losses wrt to total power are small
 - 2.5% w/ iron
 - 1.2% w/o iron

Lessons Learned

Upgrading the existing actuator

- Modifying the magnetization direction allows to increase the efficiency by $\approx 20\%$
- Providing good PM's and soft irons, the efficiency doesn't depend on the materials
- The iron pot weakly affects the efficiency

Lessons Learned

A crucial requirement

The total power dissipation has to be properly considered in the power budget

This Computation Is Correct If

Some comsol default definitions are modified

・ロ・・日本・日本・日本・1日本・2000

Lessons Learned

The good result

- a full closed-loop dynamic response is available via
 - some ode's
 - the deformable mesh

A very simple PID gives a 1 µm stroke in 0.8 ms

Future Work

Even if the design of the control system is beyond the aim of this talk, Comsol can manage any equation

The next steps

Given *any* control design, a method to determine the closed/open loop dynamic response is available

(日)(聞)(叫)(叫)(曰)(曰)

Future Work

Even if the design of the control system is beyond the aim of this talk, Comsol can manage any equation

The next steps

Given *any* control design, a method to determine the closed/open loop dynamic response is available

Appendix

For Further Reading I

- Riccardi, A., Brusa, G., Xompero, M., Zanotti, D., Del Vecchio, C., Salinari, P., Ranfagni, P., Gallieni, D., Biasi, R., Andrighettoni, M., Miller, S., and Mantegazza, P. (2004). The adaptive secondary mirrors for the Large Binocular Telescope: a progress report. In Bonaccini Calia, D., Ellerbroek, B. L., and Ragazzoni, R., editors, *Advancements in Adaptive Optics*, volume 5490 of *Proc. SPIE*, pages 1564–1571. SPIE.
- Vernet, E., Cayrel, M., Hubin, N., Mueller, M., Biasi, R., Gallieni, D., and Tintori, M. (2012).
 Specifications and design of the E-ELT M4 adaptive unit.
 In *Adaptive Optics Systems III*, volume 8447, pages 8447 8447 8. SPIE.