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On the basis of loudspeaker cabinets and panels vibration problems, this study deals with a new dynamic loudspeaker device capable to reduce mechanical
vibrations transmitted to the panel where it is fixed. Virtual 3D prototype is designed and optimized by simulations. Simulations were carried out using
analytical and finite element methods. A working prototype was realized, measured and then tested on a panel, in order to evaluate vibrations reduction.

ABSTRACT

Firstly, a standard woofer was
implemented, using a ferrite magnetic
assembly, steel basket, rubber surround
and a paper cone.

1. STANDARD LOUDSPEAKER MODEL SETUP

Loudspeaker 3D design was imported
in COMSOL, solved for the magnetic
field and structural mechanics physics.

Figure 1. Standard loudspeaker parts.
Figure 2. Loudspeaker electric impedance, 

measurement vs simulation plot comparison.
Figure 3. RMS displacement vs
frequency and amplitude.

Figure 4. RMS displacement vs frequency 
@5V amplitude. Measurement vs 

simulation plot comparison.

Real loudspeaker prototype moving parts
were measured using a laser on membrane
center along its axis movement.

Displacement @5V is used to
compare measured and
simulated amplitude.

Figure 5. Transducer magnetic 
assembly and cut lines displayed 

for flux density analysis.

Figure 6. Simulated magnetic flux density 
plotted on the cut line inside transducer gap.

Figure 7. Simulated magnetic flux density plotted on 
the cut line on the magnetic assembly external side.

2. ANTI-RATTLE LOUDSPEAKER SYSTEM DESIGN

Figure 8. 2DOF TMD.

Anti-Rattle system doesn’t represent
a loss factor for loudspeaker acoustic
performances. On the contrary it
helps transducer eliminating
structure self-vibrations. The first
developed prototype reveals about
50% of panel vibrations reduction.
But the latest simulations show the
way to improve these results.

Figure 9. Loudspeaker with the Anti-Rattle system.
Figure 10. Simulated Von Mises 

Stress on Anti-Rattle springs.

Figure 13. The new magnetic assembly 
will create a double magnetic gap, in 
which the double winding Anti-Rattle 

voice coil will move.

Figure 12. Simulated magnetic 
flux density.

Figure 14. Simulated magnetic flux 
density inside transducer gap. 

Figure 15. Simulated magnetic flux 
density inside the Anti-Rattle gaps.

3. ANTI-RATTLE LOUDSPEAKER SYSTEM RESULTS
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A loudspeaker with Anti-Rattle structure in
a mechanical system can be identified as a
TMD (Tuned Mass Damper) with 2-DOF (2
degree of freedom).

Figure 17. THD comparison of the 
Anti-Rattle system on/off @4W. 

Figure 18. THD comparison of the 
Anti-Rattle system on/off @4W. 

The closed box has high mass panels
that for a 4W measurement it’s
possible to consider the transducer
mounted on an infinitely rigid panel.

Figure 16. Frequency response comparison 
of the Anti-Rattle system on/off @4W. 

Turning on Anti-Rattle system
the THD measurement shows a
different behavior in the
frequency range 100÷500 Hz.

Changing Anti-Rattle phase the
THD measurement shows a
complementary behavior in the
same frequency range.

Eigenfrequencies structure
simulation shows the first 4
modes in the range 246÷446 Hz.

Figure 19. Eigenfrequencies. Fixed 
constraints on transducer basket screws.

Figure 22. Simulated panel displacement focused 
on resonance frequency of the loudspeaker 

excited by a sine sweep. Improved behavior of 
the Anti-Rattle system given by a phase shift.

Figure 20, 21. Using a laser scanner vibrometer a structural 
Frequency Response Function (FRF) comparison of the Anti-Rattle 
system on/off has been done. Transducer mounted on a wooden 

panel and excited by a filtered Gaussian Noise.

CONCLUSIONS

Used tools: Comsol Multiphysics for FEM simulations, Solidworks for 3D design, SpeakerLAB VVC for voice coils calculations, Klippel System for anechoic measurement, Laser Scanner Vibrometer developed by ASK.
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