Simulation of Laser-Excited Surface Acoustic Waves Traveling on a Hemispherical Steel Shell

J. Mäkinen ${ }^{1}$, D. Veira Canle ${ }^{1}$, R. Blomqvist ${ }^{1}$, A. Salmi ${ }^{1{ }^{*}}$, E. Hæggström ${ }^{1}$
${ }^{1}$ Department of Physics, Division of Materials Physics, University of Helsinki, Helsinki, Finland
*Corresponding author: ari.salmi@helsinki.fi

INTRODUCTION: Quantitative NDE of complex geometries is useful but nontrivial. Generation and propagation of laser excited Lamb waves was modeled on a hemispherical shell. Simulation predictions were compared to experimental data. A simulation to show defect detection capability was also carried out.

COMPUTATIONAL METHODS: To model laser excitation and wave propagation, the Solid Mechanics module was coupled to the Heat Transfer Module with Thermal Expansion multiphysics coupling. A 2D axisymmetric model for an intact hemispherical shell and a 3D model for a shell with a $\emptyset=9.5 \mathrm{~mm}$ hole were simulated.

Figure 1: Schematic of an intact hemispherical shell being measured.
RESULTS: Lamb wave propagation on an intact steel shell (2D axisymmetric model) is compared to measurements (Fig. 2) and theoretical values (Fig. 3). In Fig. 2 normal displacement is compared. Fig. 3 compares dispersion curves predicted by the simulation to theoretical values for a plate. In Fig. 4 the effect of a $\emptyset=9.5 \mathrm{~mm}$ defect is shown as a waterfall plot along the outer rim of the shell.

CONCLUSIONS: COMSOL Multiphysics ${ }^{\circledR}$ can model thermoelastic structural interaction that produces Lamb waves on a hemispherical structure (laser ultrasonics). Measured results for a 0.6 mm thick hemispherical shell were compared to those predicted by simulations. The simulated data shows that a defect should be detectable experimentally.

Figure 2: Simulated and measured displacement in a hemispherical shell.

Figure 3: Lamb wave dispersion curves predicted by 2D axisymmetric simulation and theoretical predictions (orange lines).

Figure 4: Waterfall plot of a simulation model featuring a defect.

