Mazars’ damage model for masonry structures: a case study of a church in Italy

A. De Falco¹, M. Mori*¹, G. Sevieri²

¹ Dept. of Energy, Systems, Territory and Construction Engineering, Pisa Univ. (Italy),
² Dept. of Civil and Environmental Engineering, Florence Univ. (Italy).

*Corresponding Author: largo L. Lazzarino, 1 - 56126 Pisa, morimatteo123@gmail.com
Seismic assessment of historical buildings

Goal:

- Safeguard of integrity and conservation

Challenges:

- Lack of knowledge of internal structure of walls, arches and vaults
- Huge variety of building techniques throughout history
- Strong nonlinear behavior
Structural modeling

Material properties: Masonry

- Low to negligible tensile strength
- Development of cracks
- Possibly high compressive strength

Modeling challenges

- Strongly nonlinear material
- Asymmetric behavior
- History dependent
- Variation of stiffness and dynamic properties

Modeling approaches for cracking

Geometric approach
- Meshfree methods
- Adaptive BEM/FEM
- Lattice methods
- Particle methods

The crack and its evolution are defined by geometric entities

Non-geometric approach
- Constitutive methods:
 - Continuum Damage Method (CDM)
 - Element Extinction Method, …
- Kinematic methods:
 - Enriched FEM,
 - XFEM, …

The crack is introduced in local material properties
Mazars’ damage model (CDM)

• Damage variable d:

$$E^d = E_0 \cdot (1 - d)$$

$$d = \alpha_t d_t + \alpha_c d_c$$

E^d = Damaged Young’s modulus

• Weighting coefficients:

$$\alpha_t = \sum_{i=1}^{3} \left(\frac{\langle \varepsilon_i^t \rangle \langle \varepsilon_i \rangle}{\bar{\varepsilon}^2} \right)^{\beta} \quad \text{and} \quad \alpha_c = \sum_{i=1}^{3} \left(\frac{\langle \varepsilon_i^c \rangle \langle \varepsilon_i \rangle}{\bar{\varepsilon}^2} \right)^{\beta}$$

$$\bar{\varepsilon} = \sqrt{\sum_{i=1}^{3} (\langle \varepsilon_i \rangle^+_t)^2}$$

• Tensile and compressive damage:

$$d_t(\kappa) = 1 - \frac{\kappa_0 (1 - A_t)}{\kappa} - A_t e^{-B_t (\kappa - \kappa_0)}$$

$$d_c(\kappa) = 1 - \frac{\kappa_0 (1 - A_c)}{\kappa} - A_c e^{-B_c (\kappa - \kappa_0)}$$

$\kappa = \max(\kappa_0, \bar{\varepsilon})$: State variable to store the maximum tensile strain.

5 material parameters: $A_c, B_c, A_p, B_p, \kappa_0$
Mazars’ damage model (CDM)

- \(\kappa_0 \): Initial damage threshold, can be defined as a function of maximum tensile strength \(f_t \) as:

 \[
 \kappa_0 = \frac{f_t}{E_0}
 \]

- \(A_c, A_t \): Residual strength ratio to peak strength

- \(B_c, B_t \): peak strength and softening branch steepness
Mazars’ model: COMSOL Implementation

COMSOL Functionality: Structural Mechanics module,
External Stress-Strain Relation (DLL) written in C code

```c
EXPORT int eval(double e[6], // Input: Green-Lagrange strain
tensor components in Voigt order
(xx,yy,zz,yz,zx,xy)
double s[6], // Output: Second Piola-Kirchhoff
stress components in Voigt order
(xx,yy,zz,yz,zx,xy)
double D[6][6], // Output: Jacobian of stress with
respect to strain, 6-by-6 matrix
in row-major order
int *nPar, // Input: Number of material model
parameters, scalar
double *par, // Input: Parameters: par[0] = E0,
par[1] = nu0, ...
int *nStates, // Input: Number of states, scalar
double *states) // States, nStates-vector

states[0] = eef;
states[1] = damage;
```
2D Test case

- Basic arch model loaded at keystone:

Plot: Third principal stress (compression) streamlines and equivalent Young modulus \(E^d = E_0 (1-d) \)

Modeling strategies:
- Gradual ramping of external load with *auxiliary sweep* functionality
- Jacobian update on every iteration
- *Global equation* with auxiliary variable to achieve displacement controlled load increment

Results:
- Damage initiation at keystone at the intrados
- Successive Damage at quarters
- 5-hinge collapse mechanism

From: "Collapse displacements for a mechanism of spreading-induced supports in a masonry arch", Simona Coccia, Fabio Di Carlo, Zila Rinaldi, Department of Civil Engineering, University of Rome "Tor Vergata", Rome, Italy - DOI 10.1007/s40091-015-0101-x
Case study: San Prospero di Monzone church

- Site photography and measurements
- CAD plan, elevation and section drawings
- 3D geometric model
- COMSOL 3D model and FE mesh
Static analysis under self-weight load

3 scenarios:
- Elastic reference model
- Mazars’ damage model without tie rods
- Mazars’ damage model with tie rods

Tie rod modeling:
- Shell interface
- Solid-Shell Multiphysics coupling
- Elastic diffusion zone

\[u_{so} \approx u_{sh} + z_{a_{sh}} \text{ on } \partial \Omega_{so} \]

such that \[-\frac{d}{2} + \epsilon_{offset} < z < \frac{d}{2} + \epsilon_{offset} \]
Static analysis under self weight load: results

Plot: \(\text{solid.dSde11} \times (\nu_0 + 1) \times \frac{(2 \times \nu_0 - 1)}{(\nu_0 - 1)} \)

Equivalent Young’s Modulus = \(E^d \)

- Without tie rods
- With tie rods
Static analysis under self weight load: results

Plot: $\text{solid.}d\text{Sde11}*(\nu_{0}+1)*(2*\nu_{0}-1)/(\nu_{0}-1)$

Equivalent Young’s Modulus $= E^d$

- Without tie rods
- With tie rods
Modal analysis

Solver linearization point: Computation of eigenmodes considering tangent stiffness: $E^d = E_0 \cdot (1-d)$

<table>
<thead>
<tr>
<th>Elastic</th>
<th>Mazars damage model</th>
<th>Mazars damage model + tie rods</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5</td>
<td>8.8</td>
<td>9.6</td>
</tr>
<tr>
<td>14.5</td>
<td>10.3</td>
<td>12.1</td>
</tr>
<tr>
<td>19.0</td>
<td>16.1</td>
<td>17.3</td>
</tr>
<tr>
<td>21.5</td>
<td>18.1</td>
<td>19.8</td>
</tr>
<tr>
<td>24.0</td>
<td>18.9</td>
<td>20.4</td>
</tr>
<tr>
<td>25.8</td>
<td>19.5</td>
<td>21.9</td>
</tr>
</tbody>
</table>

First three eigenmodes deformed shapes, tie rods model, elastic case (left) and Mazars (right).
Transient analysis
Tie rods model

Recorded seismic event from National Accelerometric Network, Fivizzano station (FVZ) on 21 June 2013 (main shock at UTC 10:33).

Damage development from the vaulted structures and at connection between facade and ceiling and triumphal arch.
Post-transient modal analysis
Tie rod model

Observations:
• Strong frequency shift due to additional damage
• Variation in mode shapes
 • 1° mode: Localization of deformation
 • 2° mode: Three quarter wavelength along walls

First three eigenmodes deformed shapes, self-weight model (left) and post time history (right).
Conclusions:

• 3D FE Model of a masonry structure
• Adoption of Mazars’ damage model via COMSOL’s external material functionality
• Evaluation of structural damage
• Evaluation of damage influence on dynamic properties

Considerations:

• Mazars’ model successfully captures damage from monotonic load histories
• Underestimation of structural resources for cyclic loads (crack closure effects)

Further developments:

• Implementation of Mazars μ-model for cyclic loads
• Fine tuning of material parameters through accurate fracture toughness considerations and fracture energy evaluation
Mazars’ damage model for masonry structures: a case study of a church in Italy

A. De Falco¹, M. Mori*¹, G. Sevieri²

¹ Dept. of Energy, Systems, Territory and Construction Engineering, Pisa Univ. (Italy),
² Dept. of Civil and Environmental Engineering, Florence Univ. (Italy).

*Corresponding Author: largo L. Lazzarino, 1 - 56126 Pisa, morimatteo123@gmail.com