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Need to accelerate your calculations ?

e The mesh : fundamental pillar of numerical computation on which the
approached solution is built

AN
B
A

PESOANA7
S
E ARG

W
— PR

Source : COMSOL application
— libraries

* A high concentration of nodes is needed where the gradients are important

—> May induce large computational times ! :
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Introduction

Definition : To adapt the mesh to the solution as time goes by

— More efficient computation

—

Fast Precise
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Working with SIMTEC

Industry Challenges
e R&D sections: experts in their field
—> Expertise in numerical modelling?
e Lack of time
 FE modelling performed by a small group of people

SIMTEC’s Solutions

 Numerical modelling project
- SIMTEC’s member as your colleague
- Help improve your modelling knowledge!
- Cost-effective outsourcing
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l.  General principle

Il. 2D validation study

I1l. 3D validation study : comparison with other softwares
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Introduction

Especially useful for a time-dependent study !

Example: transport of a concentration in water

Zero flux

Velocity field U

Outlet

Zero flux

— Concentration front propagation
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Idea : Refine the mesh where the concentration gradient norm is important

‘Gradient norm of concentrgtion ‘ ‘ AbOUt the CO nce nt ration :
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| — General principle

Avantages 1 2 fundamental points l

Coarse mesh Refined mesh

/

: Gain in accuracy : the mesh is
Few nodes : low impact on . :
: . finer where it matters
computational time

\ /

Calculation both fast and precise ! :
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I - General principle

Question : How will the mesh evolve?

— The user specifies a remeshing frequency Final
t=0 |
Time

‘ Atmesh | | | | | ‘

\ A ’ Effect : Remeshing every At,,05n

Y Y

Mesh 1 Mesh 2

N ——
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| — General principle

Question : Where will the mesh be adapted?

— The user specifies an error indicator (usually a gradient norm)

Gradient norm of concentration

Effect : Mesh refinement where
the error indicator function is
important 0 : 2 s ] :
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| — General principle
L t + At
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1. First calculation : estimation of the error indicator on the coarse mesh
To determine spatial areas where the indicator is important

2. Mesh refinement on those areas

3. Second calculation : computation of the solution on the (now) refined mesh

4. Backtostep1l

12
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| — General principle
t + At t + 2At

o o E

1. First calculation : estimation of the error indicator on the coarse mesh
2. Mesh refinement where the error indicator is important
3. Second calculation : computation of the solution on the refined mesh

4. Backto step 1 at the end of the time interval

13
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| — General principle

Double calculations sweep

1. Estimation : low precision calculation on coarse mesh
2. Mesh adaptation
3. Precise calculation on refined mesh

Estimation Estimation Estimation Estimation Estimation

t =20 At 2At 3At 4At

Final
time

Computation Computation Computation Computation Computation

14
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Il — 2D Study

Public benchmark available at
http://www.featflow.de/en/benchmarks/cfdbenchmarking/bubble.html

Reference paper:

Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.;
Tobiska, L.: Quantitative benchmark computations of two-dimensional
bubble dynamics, International Journal for Numerical Methods in Fluids,
Volume 60 Issue 11, Pages 1259-1288, DOI: 10.1002/fld.1934, 2009
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u=vw=0
yd
Il — 2D Study T % ¢
P=0
i 1 u=0 U=0
Configuration > %
Rise of a bubble of gas inside a fluid
fluid 1— L3y
e 2D geometry o
e Laminar flow modelled by Navier-Stokes -
equations T
e Two-phase flow with a phase-field approach .9 ‘ 05
]L 05 u=v=0
- — |
= 1 =
Study parameters Extract : reference papler
p1(kg.m™3) p2 (kg.m™3) uq (Pa-s) pz (Pa-s) g (m.s7?%) o(N-m1)
1000 1 10 0,1 0,98 1,96

16
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Il — 2D Study

Equations and boundary conditions

Laminar flow with Navier-Stokes equations

dt

A

oG8+ @93) =05
P —+(u-\7)u =pg —Vp + uAu
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Phase-field method to simulate two-phase flow

Principle : Use a dimensionless phase field variable ¢ that can take values in
{-1, 1} according to the phase represented

e Fludl:p=-1

e Flud2:p=1
The physical interface is characterised by ¢ = 0

18
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Il — 2D Study

Two test cases: fixed mesh and adaptive mesh

Fine mesh Adaptive mesh
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Mesh type Mesh element size Number of degrees of Computational time
freedom

Fixed 6,4+103m 260 000 75 minutes

Adaptive 54%103m 250 000 15 minutes ) /5 !

— Massive acceleration !

What about accuracy?

20
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— Good adequacy generally ...

Fixed mesh
Adaptive mesh

-0.4

-DI.2 O
Bubble shape at t = 3s

0.2

0.4

.. but some details vary (satellites)

eric l' mc:dt?llnq
2 48 -" Rxﬁwm optim.
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Il — 2D Study

Results : bubble shape and comparison
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Il — 2D Study

Quantitative comparison criteria

1
1. Position of centre of mass of the bubble :)_/ = ﬁj y as
Q

where 0 ={X € R* | @(X) 20} and |Q|= ], dS

1
2. Meanrise velocity U = —j vdS
1Q] Jq




Position of centre of mass (m)
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Results: comparison with the benchmark

& Benchmark |
-a- Adaptive mesh

—- Fixed mesh
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Mean rise velocity (m/s)
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Il — 2D Study

Results: comparison with the benchmark
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Scale in meters

11l — 3D study ;
Configuration T
AR
3D generalisation of the 2D case
2.0 E N R | _
@
I Ej:;:::. feopiiegiores
05 A5
| I
1.0
From the reference paper Extract : reference article

J. Adelsberger, P. Esser, M. Griebel, S. GroR, M. Klitz, and A. Rittgers.

3D incompressible two-phase flow benchmark computations for rising droplets.

2014. Proceedings of the 11th World Congress on Computational Mechanics (WCCM
Xl), Barcelona, Spain, also available as INS Preprint No. 1401 and as IGPM Preprint No.
393.

25
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Numerical validation
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0.01H — Mass change (in %) |+

0 1 2 3 4
Time (s)

Total mass variation < 0,2%
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Comparison with two CFD software
e NaSt3D
* OpenFOAM

Computational times

COMSOL Multiphysics® (adaptive mesh) 22 h on 2 cores at 4,16 GHz

NaSt3D (maillage fixe) 1 week on32 cores at 2,226 GHz

OpenFOAM (maillage fixe) 2,5 days on 32 cores at 2,226 GHz

27



Position of centre of mass (m)
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1l — 3D study

Results: comparison with the benchmark

Mesh visualisation (left)
streamlines (right)

- COMSOL Multiphysics (Adaptive mesh)
-o- NaSt3D (Fixed mesh)
- OpenFOAM (Fixed mesh)

interface (in red)

0.5 1 1.5 2
Time (s)

2.5
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Mean rise velocity (m/s)
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1l — 3D study

Results: comparison with the benchmark

~%- COMSOL Multiphysics (Adaptive mesh) | |
-~ NaSt3D (Fixed mesh)
- OpenFOAM (Fixed mesh)
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Time (s)
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Mesh visualisation (left)
streamlines (right)
interface (in red)

)
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1l — 3D study

Results: comparison of the bubble shape at t=3,5s

NaSt3D OpenFOAM

Extract:
reference article

Adaptive mesh with
COMSOL Multiphysics®
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Conclusion

* Principle of the adaptive mesh refinement method : accelerate
calculations while improving accuracy

e Comparison with results from literature and others CFD software :
validation of the method

e Practical applications on industry topics:

Time=0s Volume: von Mises stress (N/m”) Contour: Temperature (degC)

500

400 x107?

0.15

100

y.box
Laser piercing Additive fabrication
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Thanks a lot!
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