FINITE ELEMENT SIMULATION OF
IMPULSE ARC DISCHARGE
Alexander Chusov
OUTLINE:

- Problem statement
- Description of the physical model
- Numerical implementation
- Validation
- Preliminary results
- Conclusions
Lightning protection of overhead lines
Lightning protection of overhead lines
Lightning protection of overhead lines

A line with bare conductor
Arc is moving

A line with covered conductor
Conductor burn down
Insulator flashover
Lightning protection of overhead lines
MULTI-CHAMBER ARRESTERS

Lightning protection of overhead power lines up to 35 kV

20 kV

35 kV
Finite element simulation of impulse arc discharge

1 – silicone rubber length;
2 – intermediate electrodes;
3 – arc quenching chamber;
4 – discharge channel.

Lightning overvoltage imposed
Investigation of impulse arc quenching in multi-chamber systems.

QUENCHING TEST SCHEME

- **8/50 µs**
- \(I_m = 3\div30 \text{ kA} \)
- \(f = 50 \text{ Hz} \)
- \(U_{ch} = 2\div30 \text{ kV} \)
- \(I_f = 1\div10 \text{ kA} \)

LIGHTNING IMPULSE GENERATOR

POWER LINE VOLTAGE GENERATOR
MULTI-CHAMBER ARRESTERS
MULTI-CHAMBER ARRESTERS
Finite element simulation of impulse arc discharge

- discharge slot
- inner electrode
- outer electrode
- silicone rubber arc cavity
- fiber-glass plastic sleeve
Finite element simulation of impulse arc discharge

3 kA
Finite element simulation of impulse arc discharge

10 kA

Current, kA

\(t, \mu s \)

COMSOL CONFERENCE 2018
Finite element simulation of impulse arc discharge

20 kA
Finite element simulation of impulse arc discharge.
Finite element simulation of impulse arc discharge

Type #1

Optimal geometry?

Type #2
Finite element simulation of impulse arc discharge
ARC DISCHARGE MODEL

Magnetohydrodynamics equations (MHD)

\[\frac{\partial \rho}{\partial t} + \nabla \cdot \{ \rho \mathbf{v} \} = 0 \]

\[\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot \{ \rho \mathbf{v} \otimes \mathbf{v} \} = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{j} \times \mathbf{B} \]

\[\frac{\partial (\rho H)}{\partial t} + \nabla \cdot \{ \rho Hv - \lambda \nabla T \} = \frac{\partial p}{\partial t} + \nabla \cdot (\mathbf{T} \cdot \mathbf{v}) + \mathbf{j} \cdot \mathbf{E} - \nabla \cdot \mathbf{F} \]

\[\mathbf{j} = \sigma (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \]

\[\nabla \times \mathbf{B} = \mu_0 \mathbf{j} \]

\[\partial_t \mathbf{B} + \nabla \times \mathbf{E} = 0 \]
ARC DISCHARGE MODEL

- CFD
 - High Mach Number Flow, Laminar ($hmnf$)
- Electrodynamics
 - Electric Currents (ec)
- Radiation Transport
 - Radiation in Participating Media (rpm)
Finite element simulation of impulse arc discharge

ARC DISCHARGE MODEL

Outlet

Heat source
Joule Heat + Radiation

Preheated channel (~10 kK)

High Mach Number Flow, Laminar (hmnf)
- Fluid 1
- Initial Values 1
- Wall 1
- Thermal Insulation 1
- Symmetry 1
- Outlet 1
- Heat Source 1
- Initial Values 2

General source
- Q_0 User defined
- $ec.Qrh+rpm.Qr+rpm2.Qr$ W/m3
ARC DISCHARGE MODEL

- CFD
 - High Mach Number Flow, Laminar ($hmnf$)
 - Electric Currents (ec)
- Radiation Transport
 - Radiation in Participating Media (rpm)
Finite element simulation of impulse arc discharge

ARC DISCHARGE MODEL

Electrodynamics

Electric Currents (ec)
- Current Conservation 1
- Electric Insulation 1
- Initial Values 1
- Terminal 1
- Ground 1

Terminal type:
- Current

Current: $I_0 \text{ CurrentPulse}(t)$ A

Terminal

Ground

8/50 μs

$I_m = 3\div30$ kA
Finite element simulation of impulse arc discharge

ARC DISCHARGE MODEL

- CFD
 - High Mach Number Flow, Laminar ($hmnf$)
- Electrodynamics
 - Electric Currents (ec)
- Radiation Transport
 - Radiation in Participating Media (rpm)
Radiation transport

\[s \cdot \nabla I_{\nu}(r, s) = \kappa_{\nu} [I_{\nu}^{b}(T) - I_{\nu}(r, s)] \]

\[I_{\nu}^{b}(T) = \frac{2h}{c^2} \frac{\nu^3}{e^{\frac{h\nu}{k_B T}} - 1} \]

\[G_{\nu}(r, s) = \int_{4\pi} I_{\nu}(r, s) d\Omega \]

\[\nabla \cdot \left(\frac{1}{\kappa_{\nu}} \nabla G_{\nu} \right) = 3\kappa_{\nu} (G_{\nu} - 4\pi I_{b\nu}) \]

Radiation in Participating Media (rpm)
- Radiation in Participating Media 1
- Opaque Surface 1
- Incident Intensity 1

Equation

Equation form:
- Study controlled

Show equation assuming:
- Study 1, Time Dependent

\[Q_r = \kappa (G - 4\pi I_b) \]

\[\nabla \cdot (D_{\nu} \nabla G) + \kappa (G - 4\pi I_b) = 0 \]

Participating Media Settings

Radiation discretization method:
- P1 approximation
Radiation transport

Two-band model

from zero up to $\lambda = 120$ nm

$\alpha = 2000 \text{ m}^{-1}$

from $\lambda = 120$ nm up to $\lambda = 1$ mm

$\alpha = 50 \text{ m}^{-1}$
ARC DISCHARGE MODEL

Material properties

- High Mach Number Flow, Laminar (hmnf)
- Electric Currents (ec)
- Radiation in Participating Media (rpm)
- Radiation in Participating Media 2 (rpm2)

Materials

- Air (mat1)
 - Basic (def)
 - Interpolation 1 (rho)
 - Interpolation 2 (cp)
 - Interpolation 3 (mu)
 - Interpolation 4 (k)
 - Interpolation 5 (sigma)
 - Radiation heat transfer (RadiationHeatTransfer)
 - Interpolation 1 (Qrad)
 - Ideal gas (idealGas)
Finite element simulation of impulse arc discharge

ARC DISCHARGE MODEL

Material properties

\[\sigma(p, T) \]

\[\rho(p, T) \]

Electric Conductivity

Specific Heat

[Graphs showing electric conductivity and specific heat as functions of temperature for different pressures.]
ARC DISCHARGE MODEL
ARC MODEL VALIDATION

Open spark gap

Steel electrodes
Finite element simulation of impulse arc discharge

ARC MODEL VALIDATION
ARC MODEL VALIDATION

Finite element simulation of impulse arc discharge

- High Mach Number Flow, Laminar (hmnf)
- Electric Currents (ec)
- Radiation in Participating Media (rpm)
- Radiation in Participating Media 2 (rpm2)

8/50 μs

$I_m = 3\div30$ kA

Electrodes
Finite element simulation of impulse arc discharge

SIMULATION RESULTS

30 kA

Temperature, K

Current, kA

$\times10^4$

2.5

2

1.5

1

0.5
Finite element simulation of impulse arc discharge

SIMULATION RESULTS

30 kA

Pressure, Pa

COMSOL CONFERENCE 2018
Finite element simulation of impulse arc discharge

SIMULATION RESULTS

3 kA
Finite element simulation of impulse arc discharge

SIMULATION RESULTS

10 kA
SIMULATION RESULTS

20 kA
SIMULATION RESULTS

30 kA
SIMULATION RESULTS

Fast-imaging record of plasma jet
Finite element simulation of impulse arc discharge

SIMULATION RESULTS

3 kA
SIMULATION RESULTS

Finite element simulation of impulse arc discharge

10 kA
Finite element simulation of impulse arc discharge

SIMULATION RESULTS

20 kA
SIMULATION RESULTS

30 kA
SIMULACIÓN RESULTS
SIMULATION RESULTS: PRESSURE

Finite element simulation of impulse arc discharge.
SIMULATION RESULTS: DENSITY

Finite element simulation of impulse arc discharge
SIMULATION RESULTS: TEMPERATURE

Finite element simulation of impulse arc discharge
SIMULATION RESULTS: VELOCITY

Finite element simulation of impulse arc discharge
Type #1 is better than Type #2

$R_1^t=200\mu s < R_2^t=200\mu s$
CONCLUSIONS:

- Conventional approach to thermal plasma modeling based on MHD is applicable for the case of impulse arcs caused by lightning overvoltage to some certain extent.

- However current model is lacking some important physics.

- It could be electrode erosion, chamber geometry deformation, Lorentz force influence, something else.

- Still numerical simulation is considered as a promising tool for development of future lightning protection devices.
Thank you for your attention!