Transient Simulation of the Removal Process in Plasma Electrolytic Polishing of Stainless Steel

Igor Danilov¹, Matthias Hackert-Oschätzchen¹, Ingo Schaarschmidt¹, Mike Zinecker¹, Andreas Schubert¹

¹Professorship Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, 09107 Chemnitz, Germany
Content

1. Introduction
2. Model description
3. Results
4. Summary
Content

1. Introduction
2. Model description
3. Results
4. Summary
1. Introduction

Plasma electrolytic polishing:
- Electrochemical method for surface treatment
- Special case of anodic dissolution [1]

Advantages:
- Environment friendly aqueous solutions of salts
- Small achievable roughness ($Ra < 0.02 \ \mu m$)
- Small removal rates
- Small processing times

Disadvantages:
- Mainly metal parts can be polished
- Energy source determines the maximum part size
- Each metal requires electrolyte adaption
1. Introduction

Challenges:

- Few research work has been focused on the understanding of the process and even less on simulation
- Complex combination of many physical phenomena
- The mechanism of the polishing process is not fully understood yet

Objectives:

- Investigate PeP process:
 - Potential distribution
 - Current density distribution near the workpiece surface
- Simulate polishing process during PeP
Content

1. Introduction
2. Model description
3. Results
4. Summary
2. Model description – Studies and couplings

- The model is based on the assumption that PeP can be considered as an electrochemical polishing.
- The simulation has two studies: stationary study and time-dependent study.
- Geometry deformation is function of normal current density on the surface:

\[\nu_{\text{deform}} = K \cdot (-j_n) \]
2. Model description – Initial geometry and boundary conditions

- Ammonium sulfate in concentration of 50 g/l as an electrolyte [4]
- Steel 304 as material for the workpiece
- The thickness of plasma-gas is 150 μm
- Applied voltage of 200 V
- The initial anode surface profile was generated in COMSOL Multiphysics® using Spatial Frequencies method [5]
2. Model description – Plasma-gas layer conductivity and removal coefficient

- Based on the assumption, that almost all voltage drops in the plasma-gas layer

- Electrical field of $1.3 \cdot 10^4$ V/cm corresponds to values provided in literature: 10^4 V/cm - 10^5 V/cm [6-8]

- Removal coefficient K is calculated from experimental data: average material removal rate (MRR) and average current density for 200 V [4]

\[
E = \frac{V}{h} = \frac{200 \text{ V}}{0.015 \text{ cm}} = 13333 \text{ V/cm}
\]

\[
j_n = \sigma \cdot E
\]

\[
\sigma_{\text{plasma-gas}} = \frac{j_n}{E} = \frac{0.3399 \text{ A/cm}^2}{13333 \text{ V/cm}} = 2.55 \cdot 10^{-2} \text{ mS/cm}
\]

\[
K = \frac{\text{MRR}}{j_n} = \frac{5.24 \cdot 10^{-8} \text{ m/s}}{3398.69 \text{ A/m}^2} = 1.54 \cdot 10^{-11} \text{ m}^3/(\text{A} \cdot \text{s})
\]
Content

1. Introduction
2. Model description
3. Results
4. Summary
3. Results – Polishing effect and electric potential

Animation of the polishing process

Electric potential
3. Results – Polishing effect and electric potential

- The main voltage drop occurs in the plasma-gas layer.
- Despite the fact that the overall shape of the surface is conserved, the peaks were removed more.
- Because of voltage drops in plasma-gas layer, it can be considered as a special electrochemical cell, where the interface between plasma-gas layer and electrolyte acts as a cathode.
3. Results – Current density during polishing

- The normal current density in the cavities is lower than at the peaks
- The current density at the deeper cavities increases with the processing time
- Average current density in model is 0.313 A/cm2 comparing to 0.340 A/cm2 in experiment [4]
3. Results – Roughness calculation

- To analyse the polishing effect, the roughness parameter Ra was calculated based on:

$$Ra = \frac{1}{l} \int_{0}^{l} |h(x)| \, dx$$

- Next component couplings were used: intop1 - integration over a boundary 19; p10 and p12 - maximum functions in points 10 and 12 respectively; aveop1 – average over a boundary 19
3. Results – Roughness calculation

- Equation used in the model for Ra calculation

$$Ra = \frac{1}{(p12(x) - p10(x))} \int_{p10}^{p12} |y - \bar{y}| \, dx$$

- The roughness decreases in the model according to exponential decay, what corresponds to real experimental data [7]

- The minimal achievable roughness Ra in this model based on the exponential fit has a value of 0.84 μm [7]
Content

1. Introduction
2. Model description
3. Results
4. Summary
4. Summary

- 2D simulation of the plasma electrolytic polishing
- PeP of stainless steel can be simulated as an electrochemical machining process
- Simulation of the polishing effect and removal process
- Implementation of Ra calculation in the model

Next steps:

- Longer simulated time
- Comparison with experimental data
- Simulation with initial roughness from real sample
Contact

Chemnitz University of Technology
Professorship Micromanufacturing Technology
Reichenhainer Straße 70
09126 Chemnitz
Germany

Dipl.-Phys. Igor Danilov
Plasma electrolytic polishing and multiphysics simulation

igor.danilov@mb.tu-chemnitz.de
+49 371 5391 35459
www.tu-chemnitz.de/mb/mft
Thank you for your attention

