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Abstract: Even though failure due to presence of 

flaws, inclusions, cracks or crack like defects has 

been observed in structural components operated 

under magnetic fields.  The creation of the 

ferrous man-made structures, however, the 

formulations of various fracture theories and the 

understanding of this phenomenon rapidly 

accelerated during the 20th century. It should be 

understood clearly that catastrophic 

consequences of structural failure is sometimes 

hard to avoid because the factors involved in 

predicting fracture are very complex. In this 

manuscript, the influence of magnetostriction on 

fracture behaviour of ferri or ferromagnetic 

materials has been studied with the help of 

energy release rate of cracked specimens 

subjected under electro-magnetic environment. 

The derived contour integral has been used to 

compute the path independent integral using 

comsol-multiphysics [1]. The fracture toughness 

(KIc)  has been estimated with the help of 

already evaluated path independent integral 

using appropriate ASTM standards. 

Magnetization model (anhysteretic) has been 

assumed for the magnetostrictive material, which 

is specified using the Langevin function. The 

influence of magnetic field on fracture toughness 

parameters has been significant. The fracture 

toughness parameter has been saturated at 

saturated magnetization.  
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1. Introduction 

 
Materials with large magnetostriction are broadly 

used in sensors, actuators, energy-harvesters, and 

micro electro-mechanical systems[2–4]. 

Magnetostriction of ferromagnetic materials 

describes the change of their shape or dimension 

in response to the reorientation of magnetization 

under the influence of externally applied 

magnetic field. Magnetic shape memory 

materials are likely to have a high potential in the 

design of a different kind of actuating devices 

and sensors [5–8]. The presence of crack in these 

materials in a magnetostrictive environment has 

been a great challenge for many scientists and 

engineers to characterize the crack parameter. It 

is required to formulate the crack parameter like 

stress-intensity factor or J-integral to compute 

numerically and further experimental validation. 

One of the approach is introduced by Rice[9] for 

two dimensional field and further extended to 

three dimensional thermo-elastic, inertial field by 

Kishimoto et. al[10]. The numerical computation 

of three dimensional cracked problem has been 

studied by [11,12] for bimodular field and 

thermally induced stresses in the near-wellbore 

region during invasion of mud by Wang et. 

al[13]. The three dimensional path independent 

integral has been derived for magnetic field with 

multiple loading has been Bhushan et al[1].  

 

This manuscript deals with formulation of path 

independent magnetostrictive 3D integral for 

magneto-elastic environment. The stress-

intensity factor has been formulated from path 

independent integral. The path-independence of 

the derived integral has been proved from 

numerical computation using FE software 

package (COMSOL-multiphysics). The stress 

intensity factor has calculated from path 

independent integral. 

 

2. Formulation of Integral 
 

The formulation of path independent integral is 

similar energy conservation concept as followed 

in [1]. The integral is focused only for 

magnetostrictive problem. Further stress 

intensity factor has been derived from integral.  

The derivation of three dimensional path 

independent integral has been started with the 

schematic diagram of a plate containing a crack 

as shown Fig. 1.  In which, the crack tip is 

assumed to virtually move an infinitesimally 

small distance from the fixed frame at O to 

moving frame at O1. The direction of 2X and 



 

2x are perpendicular to the crack surface 

corresponding to O and O1 respectively. Two 

contour paths are chosen, the first one being the 

outer contour noted by path 1  curves and the 

second contour 2  can be any arbitrary contour 

surrounding the crack surfaces. The region 

enclosed by these two contours is 1A and the area 

bounded by the crack plane and the second 

contour is 2A . Now stating the equilibrium 

equations for a stressed continuum of volume V 

subjected to arbitrary traction T and body forces 

F: 

 

,ij j i iF u                                (1)                                                                                             

 

Where, ij , iF ,   and iu  are stress-tensor, 

body force per unit volume, density of solid and 

displacement respectively where the first and 

second dots specify the first or second time 

derivative of displacement. Multiplying iu on 

both sides of Eq. (1) and integrating over the 

body volume V 

 

 

,( )ij j i i i i

V V

F u dV u u dV             

                     (2)                                                                      

 

Now expanding 
, , ,( )ij i j ij j i ij i ju u u    , 

the first part of the integral of Eq. (2) after 

rearrangement  

 

, , ,( )ij j i ij i j ij i j

V V V

u dV u dV u dV     

                   (3)                      

        

 

Now traction on a small differential element on 

the contour surface can be expressed as  

  

i ij jT n                   (4)  

 

where, 
jn is the outward  normal vector.  

Substituting traction form into the integral 

equations formulated above and using Gauss’s 

Theorem (divergence theorem), it can be written 

as 

 

,( )ij i j ij i j i i

V S S

u dV u n dS T u dS    

                   (5) 

 

Introducing Eq. (5) into Eq. (3) and using strain 

derivatives ij for displacement derivative, it is 

shown that                       

 

,( )ij j i i i ij ij

V S V

u dV T u dS dV     

                        (6)                                                                     

 

Now, Eq. (2) can be written as  

 

i i i i i i ij ij

S V V V

T u dS F u dV u u dV dV       

              (7)                                                     

     

                                                                                  

Fig. 1. Configuration of crack tip { 1 (arbitrary 

curve surrounding area 1A ), c  (curve along 

the crack surface), 2A (fracture process region), 

2  (boundary of 2A )} around a region of 

infinitesimal thickness enclosing the Crack 

Front. 

 

For an infinitesimal virtual crack extension, the 

energy release rate can be evaluated from Eq. (7) 

for a differential change dl of the propagating 

crack as similar to time derivatives. This is 

expressed as  



 

 

1 1

1 1

c

i i
i i

A

ij ui
i ij

A A

du du
T d F dA

dl dl

ddu
u dA dA J

dl dl


 

 



  

 

 

      

            (8)                                     

where, 
uJ is the rate of change of energy of 

material in the fracture process region for name 

say a generalized universal integral, be it 

unimodular or bimodular. We can introduce zero 

integral terms with reference to contour 2 with 

an integral evaluated along the contour path and 

opposite the contour path by adding and 

subtracting the term

2

i
i

du
T d

dl


  to Eq. (8) as  

 

2 2 1

1 1 1 c

i i i
i i i

A

ij ui i
i ij i

A A

du du du
T d T d F dA

dl dl dl

ddu du
u dA dA J T d

dl dl dl


 

 

 

  

    

  

  

           

 

(9)  

 

Upon rearrangement following expressions for 

energy release rate 
uJ is obtained. 

 

 

1 2 2

1

c

u i i
i i

iji
i i ij

A

du du
J T d T

dl dl

ddu
F u dA

dl dl


 

  

 

  
    

  

 
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                    (10) 

1 2

1

,( )

[ ( ) ( )]

u i i
ij j i

A

iji
i i ij

A

du du
J dA T d

dl dl

ddu
F u dA

dl dl




 



  

  

 
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                       (11) 

 

1

2

,[( ) ( ) ]
iju i i

ij j i i ij

A

i
i

ddu du
J F u dA

dl dl dl

du
T d

dl


  



   

 





                        (12) 

 

Using Eq. (1), the first term of area integral in 

Eq. (12) vanishes and the integral may be written 

as 

 

2

u i
i

du
J T d

dl


               (13)       

                          

 

With reference to Fig. 2, transformation 

equations from the fixed frame 1 2,O X X  to 

moving frame 1 1 2,O x x for the infinitesimal 

crack extension can be expressed as  

 

1 1 0 2 0

2 1 0 2 0

cos sin

sin cos

x X X l

x X X

 

 

  

  

                        (14) 

 

1 1 0 2 0 0

02 1 0 2 0

cos cos cos

sin cos sin

X x x l

X x x l

  

  

  

  
                       

(15) 

 

Similarly, displacements for the fixed frame 

1 2,O X X  is given by 

 

1 2 1 0 2 0

1 0 2 0

( , , ) ( cos sin

, sin cos , )

i iu X X l u x x

l x x l

 

 

 

  
  (16)                                                 

                    

 

 
(a) 



 

 
(b) 

Fig. 2. Representation of propagation of crack tip 

from O to O1 in (a) 2D boundary and (b) 3D 

domain 

 

1 2

1 2

i i i i i i i

i

du u u x u u ux x

dl l x l l x l x l

      
    
      

 

(17) 

 

1 2

1 1

; 0i iu ux x

x l x l

  
 

   
                               (18) 

 

1

i i idu u u

dl l x

 
 
 

                           (19)  

 

Now substitution of Eq. (19) into Eq. (13) gives, 

 

2 1

( )u i i
i

u u
J T d

l x


 
  

 
                                (20) 

 

Here, 
uJ -integral is the crack driving force or 

also known as the energy release rate during 

crack extension. 

We assume that the fracture process region does 

not depend upon load conditions or upon 

geometry of body or crack. Hence, the process 

region is assumed to be constant in dimensions 

and moving along with the same speed as the 

crack tip, and hence, 0iu

l





  holds in 2 . 

Then, Eq. (20) is simplify to 

 

2 1

( )u i
i

u
J T d

x



 

                                       (21)          

 

We obtain from Eq. (14), (15) & (16) 

 

0 0

1 1 2

cos sini i iu u u

x X X
 

  
 

  
               (22)                                                        

 

Substituting Eq. (22) in Eq. (21) the integral 

equation becomes  

 

2

0 0

1 2

(cos sin )u i i
i

u u
J T d

X X
 



 
  

         (23)

     

For any arbitrary orientation 0 of the 

propagating crack front, the 
uJ can be resolved 

as 

   

1 0 2 0cos sinu u uJ J J              (24) 

 

Taking as single notation 
u

kJ  where k=1, 2 

correspond to respective coordinate axes, Eq. 

(21) can be modified using Eq. (24) as 

   

2

u i
k i

k

u
J T d

X



  


                                      (25)                          

 

However, for verification of that the above 

integral to be path independent, let us consider 

another integral surrounding the crack path and 

expressed as   

    

 

1

( )

c

u i
k i k

k

u
J T d M A

X
 


 


       (26)  

 

where, ( )kM A  are the terms determined when 

the area A1 surrounded by 1 2,  and 
c is 

specified. Now, if both the integral 
u

kJ and 

u

kJ are different, then we can write 

 

1 2

( )

c

u u i i
k k i k i

k k

u u
J J T d M A T d

X X
 

 
      

  
           

             (27) 

 

1 2

( )

c

u u i
k k i k

k

u
J J T d M A

X
 


   


              (28) 

 

( )

t

u u i
k k i k

k

u
J J T d M A

X



   

         (29) 

 



 

1 2t c      denotes the contour which 

surrounds the area A1. 

For path independence 
u u

k kJ J  and hence 

from Eq. (29)  

 

,( ) ( )

t

i i
k i ij j

k kA

u u
M A T d dA

X X




 
  

  
  (30) 

 

Therefore,         

 

1 1

,( )

c

u u i i
k k ij j i

k kA

u u
J J dA T d

X X


 

 
   

  
 (31) 

 

Using Eq. (1), we can write Eq. (31) as  

1 1

{( ) ( )}
c

iju i i
k i i ij i

k k kA

u u
J u F dA T d

X X X


 

 

 
    

   

             (k=1, 2)  

                   (32) 

                                                                

Now we decompose 
ij
  as

e

ij  , 
m

ij  

 

  
ij
  = 

e

ij +
m

ij                 (33) 

 

where,  
e

ij  Elastic Strain Component 

              
m

ij  Magnetic Strain Component 

We take elastic strain energy density function, 

eW ( )e

ij  which does not explicitly depend 

on
1

X . 

ij

e

e

ij

W 






                 (34) 

From Magnetostriction Model [14], 

2

0

( , ) ( , )
i

i

i

t x M t x 




         (35)  

 

By assuming or approximating the value of   to 

second order, 

                    
2

3 2

2
( , )s

s

m

ij M t x
M


     (36)

             

where,
s   Saturated Magnetostriction 

sM   Saturated Magnetization. 

 

Hence,      

 

2

3 2

2

s

ij
s

m

ij M
M


                 (37) 

 

As,      

 

1
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k
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k

k
c

u

k

A

X

A

u
J u F dA

X
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T d dA

X










  


 


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



 

                  

                            (38) 

Consider,

1 1

( ) ( )
e m

ij ij ij

ij ij
k k kX X X

A A

dA dA
  

 
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  
     

                         (39) 

 

Because of fracture process zone is very small  

 

1 1 2 1

ij

ij k k
k

c c

e e

X

A

dA W n d W n d









      

     

                   (40)  
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2
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k s
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X

A A

M
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M X

 
 






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3m
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ij ij
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X

A A

M
dA M dA

M X

 
 






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                   (42) 

 

We also consider area of fracture process region 

is diminishing and contour integral [1] 

0end   Combining all the quantities  

 

1 1

2

1
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3

i i

k i i i

k k
c

s

s
k

u e

k

A

ij

A

u u
J W n T d u F dA

X X
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M X
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 

  

 
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



 
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                    (43)      

                          

2
( )

D

u u

k kJ J        (k = 1, 2)           (44) 

 



 

Here k will be equal to 1 as we assume crack 

propagation variation is very small in other 

directions. And so we can write 
u

kJ  as  

 

0 0 01 2 1cos sin cosu u u u

kJ J J J        (45) 

 

As 
0

 will be very small and so 2
nd

 term will 

vanish. Hence, k will be equal to 1. 

2
( )

D

u

kJ can be taken as constant through the 

thickness d , let 
21t

A A A  . And the two 

faces of this 
t

A area is 
t

A 
and

t
A 

. As 

normal to these two faces are parallel and in 

opposite directions, the sum of the two area 

integral is given by the 
3

X derivative of the 

integrand multiplied by d . Division of both 

sides by d  gives the pointwise value for the 

integral and further sum with integrand yields J - 

integral in 3-D. 
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                   (46) 
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                    (47)  

 

All the term except 1
st
 term will vanish in above 

equation as variation of other terms in the 

direction 
3

n is constant. So, we can write above 

equation as  
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                               (i, j, k=1,2,3)                                  

 

(49) 

 

Again,       

 

  0 01 2 3 13
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(50)  

 

After, taking k=1  
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              (51) 
 

Here, in the above expression, second term will 

be zero as dot product of normal vector 

 *
1 3

n n is zero and in the third term, j=1,2 will 

vanish and only 3 contribute in the expression as 

follows: 
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(i, j =1,2,3)             (52) 

 

In the absence of body forces and material inertia 

the Eq. (52) can be written as 
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(i, j =1,2,3)             (53) 

 

 

Within the elastic limit the fracture toughness 

IcK values calculated from critical path 

independent integral  
3

u

kc D
J  employing the 

following expression taken from ASTM E1921-

17a [15] and rearranged in following form: 

 
 

3

21

u

kc D
Ic

J E
K





       (54) 

where,  
3

u

kc D
J is the critical path independent 

integral value which is equivalent to critical 

energy release rate value for the material having 

no permissible growth of plastic zone. KIc is the 

critical stress intensity factor or fracture 

toughness. The fracture toughness is the material 

property estimated with experimental testing. 

The simulation results may compare with the 

experimental value for the specific failure load. 

 

3. Finite Element Model Results 
 

Finite element modeling of rectangular cracked 

bar under the magnetostriction has been 

developed using COMSOL multiphysics.  

Three-dimensional cracked beam geometry has 

been built and solved under the magnetostrictve 

environment. The four contours have been taken 

to prove the path independence of the integral 

 
3

u

k D
J .  The integrating contours and magnetic 

field has been represented in the Fig. 3.  

 
Fig. 3. Integrating contours and applied 

boundary condition in the magnetic field  

 

 The 50 mm cracked beam has been taken with 

6mm x 6mm cross-section. The crack length has 

been taken 1.5 mm. The cracked specimen is 

surrounded by helical coil which carry the input 

current to induce magnetostriction over the 

specimen. The magnetic flux leakage is 

minimized by the steel housing. Fig.4 illustrate 

the arrangement of steel housing, helical coil and 

the cracked specimen.  

 

 
 

Fig. 4. The arrangement of steel housing, helical 

coil and the cracked specimen (sectional view) 

 

The magnetization model has been assumed for 

the magnetostrictive material, which is specified 

using the Langevin function[14,16,17] as 

follows: 
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            (55) 

 

where, a is domain density constant with 

dimensions of magnetic field and He is the 

effective magnetic field.  

 

The material property has been taken for 

magnetostrictive material is 60 GPa and .3 as 

modulus of elasticity and Poisson’s ratio 

respectively. Saturated magnetization and 

saturated magnetostriction are 15x10
5
 A/m and  

2x10
-4

 respectively and Effective domain density 

(a) is 7000 A/m. 

A mesh convergent model has been taken for the 

simulations current carrying magnetic field 

problem. The finite element mesh model 

contains 92210 tetrahedral elements and 13296 

hexahedral elements. The tetrahedral elements 

are used to mesh steel housing, helical coil, and 

air domains, whereas the hexahedral elements 

are used to mesh the cracked specimen as shown 

in Fig 5.  

 

  

Fig. 5. Mesh distribution of cracked specimen 

model with steel housing enclosing the drive 

coil.  

The normalized path independent integral has 

been plotted against the integration contour in 

the Fig. 6. The path independency of the integral 

for magnetostrictive problem has been proved 

for four contours.  

Fig. 7 represents the variation of normalized 

integral  
3

u

k D
J  against the increasing current 

density. The plot shows integral values increased 

with increasing current density applied on the 

coil and saturated at the range of 2x10
6
 A/m

2
. 

The increase of current density increases the 

magnetization value over the specimen and 

saturated at a particular value of current 

density[18,19]. It is well known that increasing 

magnetic field increases the magnetization up to 

saturated magnetization. 
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 Fig. 6 The integral has been proved for four 

contours. 
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Fig. 7 The variation normalized  
3

u

k D
J integral 

through increasing current density.  

The stress-intensity factor has been evaluated for 

saturated value of the path independent integral 

 
3

u

k D
J using Eq. (54).  The critical value of 

stress intensity factor is the fracture toughness. 

 

 



 

4. Conclusion 

 

A conservation path independent integral J for a 

straight crack has been proposed to have the 

physical meaning of energy release rate (both in 

two dimensional and three dimensional cases) 

for a homogeneous, isotropic material 

considering combined effects of 

magnetostriction. The path independency of the 

integral  
3

u

k D
J has been proved for four 

contours. The magnetization saturates after 

increasing current density.  The integral 

 
3

u

k D
J value saturates at saturated 

magnetization.  

 
References 

 

[1] Bhushan, A., Panda, S. K., Singh, P. K., 

Kartheek, P., Kumar, R., and Mittal, Y., 

2018, “3D Path Independent Integral for 

Thermoelastic and Magnetostriction 

Problem,” Mechanics Research 

Communications. 

[2] Wang, H., Zhang, Y. N., Wu, R. Q., Sun, 

L. Z., Xu, D. S., and Zhang, Z. D., 2013, 

“Understanding Strong Magnetostriction 

in Fe 100-XGaxalloys,” Scientific 

Reports, 3, pp. 1–5. 

[3] Clark, A. E., “FerromagneticMaterials, 

Vol. 1.” 

[4] Clark, A. E., and Hathaway, K. B., 2000, 

Handbook of Giant Magnetostrictive 

Materials, Academic, San Diego, 2000. 

[5] Handley, R. C. O., Murray, S. J., 

Marioni, M., Nembach, H., Allen, S. M., 

Handley, R. C. O., Murray, S. J., 

Marioni, M., Nembach, H., and Allen, S. 

M., 2000, “Phenomenology of Giant 

Magnetic-Field-Induced Strain in 

Ferromagnetic Shape-Memory Materials 

( Invited ) Phenomenology of Giant 

Magnetic-Field-Induced Strain in 

Ferromagnetic Shape-Memory Materials 

„ Invited …,” 4712. 

[6] Murray, S. J., Marioni, M., Allen, S. M., 

Handley, R. C. O., Lograsso, T. A., 

Murray, S. J., Marioni, M., Allen, S. M., 

and Handley, R. C. O., 2000, “6 % 

Magnetic-Field-Induced Strain by Twin-

Boundary Motion in Ferromagnetic Ni – 

Mn – Ga in Ferromagnetic Ni – Mn – 

Ga,” 886, pp. 10–13. 

[7] Sakon, T., Sasaki, K., Numakura, D., 

Abe, M., Nojiri, H., Adachi, Y., and 

Kanomata, T., 2013, “Magnetic Field-

Induced Transition in Co-Doped,” 54(1), 

pp. 9–13. 

[8] Sozinov, A., Likhachev, A. A., Lanska, 

N., and Ullakko, K., 2002, “Giant 

Magnetic-Field-Induced Strain in 

NiMnGa Seven-Layered Martensitic 

Phase,” Applied Physics Letters, 80(10), 

pp. 1746–1748. 

[9] Rice, J. R., 1968, “A Path Independent 

Integral and the Approximate Analysis 

of Strain Concentration by Notches and 

Cracks,” Journal of Applied Mechanics, 

ASME, 35, pp. 379–386. 

[10] Kishimoto, K., Aoki, S., and Sakata, M., 

1980, “On the Path Independent Integral- 

J ,̂” Engineering Fracture Mechanics, 

13(4), pp. 841–850. 

[11] Bhushan, A., and Panda, S. K., 2018, 

“Experimental and Computational 

Correlation of Fracture Parameters K Ic , 

J Ic , and G Ic for Unimodular and 

Bimodular Graphite Components,” 

Journal of Nuclear Materials, 503, pp. 

205–225. 

[12] Bhushan, A., Panda, S. K., Singh, S. K., 

and Khan, D., 2015, “Finite Element 

Evaluation of J -Integral in 3D for 

Nuclear Grade Graphite Using 

COMSOL-Multiphysics,” Proceedings 

of COMSOL Conference, Pune October 

29-30, 2015, Pune, pp. 1–7. 

[13] Wang, Z., and Chen, Y., 2018, “Finite 

Element Analysis of Thermally Induced 

Stresses in the Near-Wellbore Region 

During Invasion of Mud Into Fractures,” 

Journal of Energy Resources 

Technology, ASME, 140(May), pp. 1–

10. 

[14] Dapino, M. J., Smith, R. C., and Flatau, 

A. B., 2000, “Structural Magnetic Strain 

Model for Magnetostrictive 

Transducers,” IEEE Transactions on 

Magnetics, 36(3), pp. 545–556. 

[15] ASTM E1921-17a, 2017, “Standard Test 

Method for Determination of Reference 

Temperature , To, for Ferritic Steels in 

the Transition Range,” ASTM Book of 

Standards, pp. 1–27. 

[16] Liorzou, F., Phelps, B., and Atherton, D. 



 

L., 2000, “Macroscopic Models of 

Magnetization,” IEEE Transactions on 

Magnetics, 36(2), pp. 418–428. 

[17] Dapino, M. J., Smith, R. C., Faidley, L. 

E., and Flatau, A. B., 2000, “Coupled 

Structural-Magnetic Strain and Stress 

Model for Magnetostrictive 

Transducers,” Journal of Intelligent 

Material Systems and Structures, 11(2), 

pp. 135–152. 

[18] Bhushan, A., Panda, S. K., Mittal, Y., 

Kartheek, P., and Kumar, R., 2018, 

“Study of 3D Mathematical Model of 

Rectangular Bar under 

Magnetostriction,” Proceeding of Second 

International Conference on 

Mechanical, Automotive and Aerospace 

Engineering - MAAE 2018, pp. 14–20. 

[19] COMSOL-Multiphysics, T., 2017, 

Nonlinear Magnetostrictive Transducer 

(Tutorial). 

 

 


