MEMS Test Structures for Residual Stress Measurements

Akshdeep Sharma¹, Maninder Kaur¹, Dinesh Kumar² and Kamaljit Rangra¹
¹ Central Electronics Engineering Research Institute (CEERI), PILANI
² Kurukshetra University Kurukshetra, Haryana, India

Sensors and Nanotechnology Group
RF MEMS /SEM Team

Presented at the COMSOL Conference 2010 India
Outline

➢ Motivation
➢ Theory
➢ Results and Discussions
➢ Summary
➢ References
MEMS Test structures*

- Displacement Type: T, H shape structure
- Buckling Type: Beams, Cantilevers, Gückel Rings, Diamond structure
- Rotation Type: Pointers, Bent-beam, Lancet structures

Residual Stresses

Theory

Basic Layout of Lancet

- **Anchor**
- **Tilted Beam**
- **Driving**
- **Junction**
- **Pointer**

Compressive **Tensile**

Figure: Displacement as a function of tilt angle α.

- Displacement (μm) vs. Tilt angle α (Deg)
 - 8-10deg.

Schematic of modeling sequence

- **Strain** → **Tilted Arm Model** → **Force acting on driving Bar** → **Junction Model** → **Displacement**

A. Conceptual schematic of the asymmetric lancet

B. Conceptual schematic of the symmetric lancet

displacement $X = \frac{H}{h} \left\{ DL_B + (L + \Delta L) \times \sin \left[\arccos \left(\frac{L + \Delta L}{L + R} \right) \right] - L \sin \alpha \right\}$

$\text{displacement} = H \sin \alpha = H \sin \left[\arcsin \left(\frac{x + \left(\Delta L_B + (L + \Delta L) \times \sin \left[\arccos \left(\frac{L + R}{L + \Delta L} \right) \right] - L \sin \alpha \right)}{h / \sin \beta} \right) - \beta \right]$
Results and Observations

Asymmetric pointer structure with single junction layout
Asymmetric pointer structure with double junction layout
Asymmetric Lancet pointer structure with single junction and electrical read out

Cont...
Symmetric Lancet pointer structure with double junction and electrical read out
SEM image of fabricated symmetric lancet
Summary

<table>
<thead>
<tr>
<th>Type Structures</th>
<th>Displacement (µm)</th>
<th>Stress (MPa)</th>
<th>Stress Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric Pointer</td>
<td>0.3</td>
<td>239</td>
<td>Tensile</td>
</tr>
<tr>
<td>Symmetric Pointer</td>
<td>0.9</td>
<td>217</td>
<td>Tensile</td>
</tr>
<tr>
<td>Asymmetric Lancet Pointer</td>
<td>3.5</td>
<td>221</td>
<td>Tensile</td>
</tr>
<tr>
<td>Symmetric Lancet Pointer</td>
<td>6.7</td>
<td>228</td>
<td>Tensile</td>
</tr>
</tbody>
</table>
References

Thank You!