Modeling Neural Tissue and Membrane Behavior During Far-field Current Injection

Rosalind Sadleir
J. Crayton Pruitt Family Department of Biomedical Engineering
University of Florida

Atul Minhas, Eung Je Woo
Department of Biomedical Engineering
Kyung Hee University
MREIT: From Magnetic Flux Density to conductivity

Material Property:
\[\sigma : \text{conductivity}, \quad \rho = \frac{1}{\sigma} : \text{resistivity} \]

Neumann Boundary Value Problem:
\[\nabla \cdot \left[\sigma(r) \nabla V(r) \right] = 0 \quad -\sigma \frac{\partial V}{\partial n} = J_n \quad \text{on } \partial \Omega \]

Value Problem:
\[J(r) = -\sigma(r) \nabla V(r) \quad \nabla \cdot J(r) = 0 \]

\[\nabla \cdot B = 0 \Rightarrow \nabla \times J = -\frac{1}{\mu_o} \nabla^2 B \]

\[-\frac{1}{\mu_o} \nabla^2 B_z = \frac{\partial \sigma}{\partial y} \frac{\partial V}{\partial x} - \frac{\partial \sigma}{\partial x} \frac{\partial V}{\partial y} \]
Pulse Sequence (Spin Echo)

RF

Slice selection

Phase encoding

Reading

Positive current, I^+

Negative current, I^-

90° 180°

$T_c/2$ $T_c/2$
Tissue phantom trials

Conductivities in S/m

11 T MR magnitude image

Turkey: \(\sigma = 0.531 \)

Pork: \(\sigma = 0.485 \)

Agar: \(\sigma = 1.3 \)
B_z data

S.E. 20mA
G.E. 20mA
S.E. 10mA
G.E. 10mA
Methods for detecting neural activity

- MEG
- EEG

In MRI
- BOLD contrast (Ogawa and Lee 1990)
- B_0 perturbation
 - RF (3T and above) (Bodurka et al. 1999)
 - Low frequency (μHz) (Kraus et al 2008)
- Lorentz effect imaging (Truong et al. 2008)
- Membrane Conductivity Changes (Sadleir et al. 2010)
Membrane Conductance variation

ΔV_m vs. V_m [mV]

$V_r - V_{Na} = -115$ mV

$V_m = 0$

Threshold potential

$G_m = G_K + G_{Na}$

G_Na

G_K

$V_r - V_{K} = +12$ mV

Time [ms]

G [mS/cm2]

Malmivuo and Plonsey 1995
Aplysia Model
Bidomain conductivity modelling

after Roth (2000)
Bidomain Model

\[\nabla \cdot J_i = - \nabla \cdot J_e = i_m \]

\[V_m = \phi_i - \phi_e \]

\[J_i = - D_i \nabla \phi_i \]

\[J_e = - D_e \nabla \phi_e \]

3 application modes
Vo (bath), Ve and Vi (tissue)

At boundaries: \[\frac{\partial \phi_i}{\partial n} = 0 \] i.e. insulation
\[V_e = V_o \]

Table 1. Bidomain Parameters and Constants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_i)</td>
<td>3.63</td>
<td>S/m</td>
<td>intracellular conductivity</td>
</tr>
<tr>
<td>(\sigma_e)</td>
<td>5.07</td>
<td>S/m</td>
<td>extracellular conductivity</td>
</tr>
<tr>
<td>(\sigma_o)</td>
<td>5.07</td>
<td>S/m</td>
<td>bath conductivity</td>
</tr>
<tr>
<td>(\sigma_p)</td>
<td>1</td>
<td>S/m</td>
<td>port conductivity</td>
</tr>
<tr>
<td>(f_i)</td>
<td>0.7</td>
<td>-</td>
<td>intracellular filling fraction</td>
</tr>
<tr>
<td>(\beta)</td>
<td>20 000</td>
<td>m(^{-1})</td>
<td>surface to volume ratio</td>
</tr>
<tr>
<td>(G_{m,rest})</td>
<td>6.7</td>
<td>S/m(^2)</td>
<td>membrane conductivity, rest</td>
</tr>
<tr>
<td>(G_{m,active})</td>
<td>320</td>
<td>S/m(^2)</td>
<td>membrane conductivity, active</td>
</tr>
</tbody>
</table>
Measurement with MREIT

- Detection of changes in B_z (current flow) data as a result of changes in membrane conductance
- Signal size depends on observing membrane conductivity change during application of imaging current
Current Limits

90 μA applied
Max scale at 1.2 A/m²
\[\Delta x = \Delta y = 281 \ \mu m \]
\[\Delta z = 1 \ mm \]

B_z and \(\Delta B_z \) data

Y current direction

X current direction

\(B_z \)

\(\Delta B_z \)
Percentage Changes

$\Delta x = \Delta y = 281 \mu m$

$\Delta x = \Delta y = 562 \mu m$

$\Delta x = \Delta y = 1120 \mu m$

$\Delta z = 1 \text{ mm}$
SNR at 17.6 T

\[sd(B_z) = \frac{1}{\sqrt{2\gamma T_c Y_M}} \]

Table 2. Expected \(B_z \) Noise Levels (T) at different SNR levels in a 17.6 T main field

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Pixel Size</th>
<th>(\Delta z)</th>
<th>Predicted Noise (T) NEX=2</th>
<th>Predicted Noise (T) NEX=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 x 128 x 16</td>
<td>140 (\mu m)</td>
<td>0.5 (mm)</td>
<td>(8.0 \times 10^{-9})</td>
<td>(1.2 \times 10^{-8})</td>
</tr>
<tr>
<td>64 x 64 x 8</td>
<td>281 (\mu m)</td>
<td>1 (mm)</td>
<td>(2.8 \times 10^{-9})</td>
<td>(4.4 \times 10^{-9})</td>
</tr>
<tr>
<td>32 x 32 x 8</td>
<td>562 (\mu m)</td>
<td>1 (mm)</td>
<td>(1.4 \times 10^{-9})</td>
<td>(2.2 \times 10^{-9})</td>
</tr>
<tr>
<td>16 x 16 x 8</td>
<td>1120 (\mu m)</td>
<td>1 (mm)</td>
<td>(7.0 \times 10^{-10})</td>
<td>(1.1 \times 10^{-9})</td>
</tr>
</tbody>
</table>
ΔB_z distributions

Vertical

Horizontal

$\Delta x = \Delta y = 140 \, \mu m$
$\Delta z = 500 \, \mu m$

$\Delta x = \Delta y = 281 \, \mu m$
$\Delta z = 1000 \, \mu m$

$\Delta x = \Delta y = 562 \, \mu m$
$\Delta z = 1000 \, \mu m$

$\Delta x = \Delta y = 1120 \, \mu m$
$\Delta z = 1000 \, \mu m$
Active-Rest reconstruction
Active Behavior?

• Replace passive membrane with ODE model (e.g. Hodgkin Huxley)
• Helps with dynamic behavior prediction and current pattern design
Bidomain Model

\[V_m = \phi_i - \phi_e \]

\[\nabla \cdot J_i = -\nabla \cdot J_e = i_m \]

\[i_m = \beta G_m V_m \]

\[i_m = \beta(C_m \frac{dV_m}{dt} + (V_m - V_{Na})G_{Na} + (V_m - V_K)G_K + (V_m - V_L)G_L) \]

\[J_i = -D_i \nabla \phi_i \]

\[J_e = -D_e \nabla \phi_e \]

3 application modes
Vo (bath), Ve and Vi (tissue)

At boundaries: \[\frac{\partial \phi_i}{\partial n} = 0 \] i.e. insulation

\[V_e = V_o \]

Table 1. Bidomain Parameters and Constants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_i)</td>
<td>3.63</td>
<td>S/m</td>
<td>intracellular conductivity</td>
</tr>
<tr>
<td>(\sigma_e)</td>
<td>5.07</td>
<td>S/m</td>
<td>extracellular conductivity</td>
</tr>
<tr>
<td>(\sigma_o)</td>
<td>5.07</td>
<td>S/m</td>
<td>bath conductivity</td>
</tr>
<tr>
<td>(\sigma_p)</td>
<td>1</td>
<td>S/m</td>
<td>port conductivity</td>
</tr>
<tr>
<td>(f_i)</td>
<td>0.7</td>
<td>-</td>
<td>intracellular filling fraction</td>
</tr>
<tr>
<td>(\beta)</td>
<td>20,000</td>
<td>m(^{-1})</td>
<td>surface to volume ratio</td>
</tr>
<tr>
<td>(G_{m,rest})</td>
<td>6.7</td>
<td>S/m(^2)</td>
<td>membrane conductivity, rest</td>
</tr>
<tr>
<td>(G_{m,active})</td>
<td>320</td>
<td>S/m(^2)</td>
<td>membrane conductivity, active</td>
</tr>
</tbody>
</table>
\[i_m = \beta (C_m \frac{dV_m}{dt} + (V_m - V_{Na})G_{Na} + (V_m - V_K)G_K + (V_m - V_L)G_L) \]

\[G_{Na} = G_{Na \text{ max}} m^3 h \]

\[G_{K} = G_{K \text{ max}} n^4 \]

\[G_L = \text{constant} \]

\[\frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m \]

\[\frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h \]

\[\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n \]

TRANSFER RATE COEFFICIENTS

\[\alpha_m = \frac{0.1 \cdot (25 - V)}{e^{(25-V)/10}} \frac{1}{-1 \text{ m s}} \]

\[\alpha_h = \frac{0.07}{e^{V/20}} \frac{1}{\text{ m s}} \]

\[\alpha_n = \frac{0.01(10 - V)}{e^{(10-V)/10}} \frac{1}{-1 \text{ m s}} \]

\[\beta_m = \frac{4}{e^{(V'/18)}} \frac{1}{\text{ m s}} \]

\[\beta_h = \frac{1}{e^{(30 - V')/10}} \frac{1}{+1 \text{ m s}} \]

\[\beta_n = \frac{0.125}{e^{V'/80}} \frac{1}{\text{ m s}} \]

CONSTANTS

\[V_r - V_{Na} = -115 \]

\[V_r - V_K = +12 \]

\[V_r - V_L = -10.613 \text{ mV} \]

\[C_m = 1 \mu F/cm^2 \]

\[G_{Na \text{ max}} = 120 \text{ ms/cm}^2 \]

\[G_{K \text{ max}} = 36 \text{ ms/cm}^2 \]

\[G_L = 0.3 \text{ ms/cm}^2 \]
Reduced HH model
(Kepler, Abott and Marder 1992)

• 2 application modes in HH model (n follows h)

\[
\frac{dm}{dt} = k_m \left[m(V_m) - m \right]
\]

\[
\frac{dh}{dt} = k_m \left[h(V_m) - h \right]
\]
Basic Behavior

• Central cylinder only: 3 App modes (h, m, V_m)
• External constant current $i_e = 0.05 \text{ A/m}^3$

\[\nabla \cdot J_m = i_m + i_e \]
Model 2

- Central cylinder only: 4 App modes (h, m, V_i, V_e)
- Externally Injected Source on opposite sides
- Coupling parameter $\beta = 1$ (should be 30000)
Model 2 dynamic view
Model 3

- Central cylinder + Bath : 5 App modes (h, m, V_i, V_e, V_o)
- Current injected into ports of bath
- Coupling parameter $\beta = 1$ (should be 30000)
Conclusions

• Bidomain model is a good way of estimating volume averaged activity
• Results plausibly consistent with others’ estimations
• Moderate scale/high field essential to proving concept
• Can be used to explore excitability and/or imaging
• Tweaking of final model is required
 – Solver settings
 – Adding anisotropy
Future Work

- Modelling
 - Active Membrane Model
 - Retinal Ganglion Model
 - Cortical Experiments and Models?
- MREIT Technology (increased SNR)
 - Pulse Sequences ->
 - reduced current and/or increased injection time/TR
 - Noise reduction
 - In data acquisition
 - In postprocessing
 - Anisotropic Reconstructions
- Technical Considerations
 - Pharmacological manipulation of thresholds