Modeling Energy Harvesting From Membrane Vibrations in COMSOL

Dr. Cornel Sultan
Dr. Rakesh K. Kapania
Raymond C. Singh
Mohammed R. Sunny

Department of Aerospace and Ocean Engineering,
Collaborative Center in Multidisciplinary Sciences
Virginia Polytechnic Institute and State University

Presented at COMSOL Conference 2010
October 7th, 2010 - Boston, MA
Acknowledgements

This work was supported by the Institute for Critical Technology and Applied Science (ICTAS) and Virginia Space Grant Consortium (VSGC).
Outline

- Importance of Energy Harvesting
- Prestressed Membrane Structures
- Challenges in Energy Harvesting
- Transducer Materials
- Estimate of Harvested Energy
- Optimal Prestress and Transducer Locations
Importance of Energy Harvesting

- Recycling energy vs. expending energy
- Useful for multiple applications
- Increases autonomy
- Reach inaccessible locations
Why Membranes?

- Possibility of large amplitude vibrations

- Natural frequencies and mode shapes can be tuned by changing the prestress
Prestressed Membrane Structures

- Prestress is applied to ultra-lightweight membrane structures to keep them in desired shape and provide stiffness

Bat-Wing Micro Air Vehicles

Inflatable Space Antenna

Roof of Denver International Airport
Challenges in Energy Harvesting

- Maximize ability to support large strains
- Maximize power output
- Place transducers at points of high deformation
Transducer Materials

- Piezoceramics
 - Do not support large strains
 - Produce high voltages and useable power

- Electroactive polymers (i.e. ionic polymers)
 - Supports large strains
 - Do not produce useable amounts of power

- Flexible piezomaterials (PVDF, macro-fiber composites, etc.)
 - Designed to accommodate large strains while sustaining high piezoelectric constants
Transducer Materials

- Macro-fiber composites was found to have the highest piezoelectric coefficient for transverse stresses

- PVDF support highest strain limit, but would not produce higher output
Modeling Challenges

- Find relationships between membrane deformation and inputs
- Find relationships between electric field and deformation
- Finite element approach more suitable for nonlinear problem
- For MSC/NASTRAN use “thermal-piezo analogy”
- ANSYS/ABAQUS, can use piezoelectric elements directly
Governing Equation of a Membrane with Transducer

- Governing equations are determined from the following condition:

\[\delta \Pi = 0 \]

\[\Pi = \int_{t_1}^{t_2} (T - U + \int p \, wdA) \, dt \]

\[T = \frac{1}{2} \left[\int_{v_E} \rho^E v^2 \, dv + \int_{v_S} \rho^S v^2 \, dv \right] = \text{Kinetic Energy} \]

\[U = \frac{1}{2} \left[\int_{v_E} \sigma_r^T \epsilon d v_E + \int_{v_S} \sigma_r^T \epsilon d v_s + \int_{v_E} \sigma_r^T \epsilon d v_E \right] - \int_{v_E} D^T E d v_E = \text{Strain Energy} \]

- Substitution of constitutive relations and strain-displacement relationship into \(\Pi \) yields governing differential equations (nonlinear coupled PDEs)
Transducer Materials

- Analyzed the response of the membrane to find out the electric field generated in the transducer.
- The non-linear governing differential equations were solved using the Adomian decomposition method.
- The analysis was performed for different load cases for different transducer locations.
Modeling Challenges

Contour Map Showing the Electric Field That Can Be Harvested at Each Location

\[P_1(x, y, t) = P_0 \sin \left(\frac{\pi x}{L} \right) \sin \left(\frac{\pi y}{L} \right) \]

\[P_2(x, y, t) = P_0 \sin \left(\frac{2\pi x}{L} \right) \sin \left(\frac{\pi y}{L} \right) \]
Governing Equation of a Membrane with Transducer

\[P_3(x, y, t) = P_0 \sin\left(\frac{2\pi x}{L}\right) \sin\left(\frac{2\pi y}{L}\right) \]

\[P_4(x, y, t) = P_0 \sin\left(\frac{3\pi x}{L}\right) \sin\left(\frac{2\pi y}{L}\right) \]

Contour Map Showing the Electric Field That Can Be Harvested at Each Location
Solution of the Equations

\[P_5(x, y, t) = P_0 \sin \left(\frac{3\pi x}{L} \right) \sin \left(\frac{2\pi y}{L} \right) \]

\[P_6(x, y, t) = P_0 \sin \left(\frac{3\pi x}{L} \right) \sin \left(\frac{2\pi y}{L} \right) \]

Contour Map Showing the Electric Field That Can Be Harvested at Each Location
Challenges in COMSOL

- Keys to modeling prestressed membranes are understanding the following:
 - Large deformations must be accounted for
 - Membranes have no bending stiffness, while COMSOL only has shell and solid elements, unlike ABAQUS
 - Prestress increases system stiffness, and thus alters eigenfrequencies
Challenges in COMSOL

- Alternating between COMSOL 3.5 and 4.0 for computational analysis
- Modeling prestress in membrane was difficult to adapt for COMSOL
- Keeping the prestress and having it interact with the piezoelectric patch more difficult
- Simple problem of analyzing the natural frequency of a plain square membrane successful
Simple Membrane Comparison

- Below are the results from a comparison made between literature\(^1\) and COMSOL for a simple membrane
- Prestress applied to .2 x .2 x .0001 m Kapton membrane in static step, then eigenfrequency analysis performed (1st mode shown)

\(^1\) S. Kukathasan and S. Pellegrino, Vibration of Prestressed Membrane Reflectors, ESA Contractor Report

<table>
<thead>
<tr>
<th>Prestress (N/m)</th>
<th>COMSOL Frequency</th>
<th>Analytical Frequency</th>
<th>ABAQUS Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>34.46 Hz</td>
<td>39.78 Hz</td>
<td>39.66 Hz</td>
</tr>
<tr>
<td>20</td>
<td>51.28 Hz</td>
<td>56.25 Hz</td>
<td>56.08 Hz</td>
</tr>
<tr>
<td>30</td>
<td>63.89 Hz</td>
<td>68.9 Hz</td>
<td>68.69 Hz</td>
</tr>
<tr>
<td>40</td>
<td>75.25 Hz</td>
<td>79.56 Hz</td>
<td>79.31 Hz</td>
</tr>
<tr>
<td>50</td>
<td>87.87 Hz</td>
<td>88.95 Hz</td>
<td>88.67 Hz</td>
</tr>
</tbody>
</table>
Conclusions

- Energy harvesting from membranes requires heterogeneous materials and multi-physics.
- Many methods/software require sequential analysis and additional intermediate processing.
- Success has been obtained using analytical methods (Adomian) + FEM tools.
- Barriers still exist in implementing the solution in multi-physics software, e.g. COMSOL.
Overview of the Adomian Decomposition Method

- Consider the differential equation

\[LY + NY + RY = g(t) \]

\[Y = Y_0 - L^{-1} NY - L^{-1} RY \]

where \(Y_0 = Y(0) + tY'(0) + L^{-1} g(t) \)

- The general solution is assumed to be of the form

\[Y = \sum_{n=0}^{\infty} Y_n \]

where \(Y_n = -L^{-1} NY_{n-1} - L^{-1} RY_{n-1} \)

\[Y_0 = Y(0) + tY'(0) + L^{-1} g(t) \]

\[A_0 = f(Y_0) \]

\[Y_1 = -L^{-1} RY_0 - L^{-1} NA_0 \]

\[A_1 = Y_1 \frac{d}{dY_0} f(Y_0) \]
Limitations

- Let us write \(S_n = \sum_{i=0}^{n} Y_n \)

- \(\lim_{n \to \infty} S_n = Y \)

- The solution \(Y \) converges if

\[\exists \alpha \leq 1, \quad \| Y_{k+1} \| < \alpha \| Y_k \|, \quad \forall k \in NU \{0\} \]