Implementation of the Perfectly Matched Layer to Determine the Quality Factor of Axisymmetric Resonators in COMSOL

M. Imran Cheema and Andrew G. Kirk
ECE Department, McGill University, Montreal, Canada

Oct 8, 2010
Outline

- Introduction
- Whispering Gallery modes
- Previous FEM Model
- Perfectly Matched Layer
- Our FEM Model
- Conclusions
Introduction

- Accurate electromagnetic model is needed for various axisymmetric optical resonators such as micro-discs and micro-toroids.
- A COMSOL model for such resonators exists but without perfectly matched layer.
- Unwanted reflections from the computation wall reduces the accuracy of the model.
- Quality factor determination with high accuracy is important for certain applications.
Whispering Gallery Modes (WGM)

- In open cavities light circulates in the form of WGM
- WGM field does not occupy the whole cavity
- Portion of a WGM field lies outside the cavity
Previous Finite Element (FEM) Model

- Full vectorial model – No transverse approximation
- No PML or any other absorbing boundary condition
- Important parameters can be extracted for various cavity geometries:
 - Quality factors
 - Mode Volumes
 - Resonant Frequencies
 - Shapes of fundamental and higher order modes
- Estimated quality factor for the disc resonator is $1.31 \times 10^7 < Q < 3.82 \times 10^7$
 - Prior knowledge of the mode frequency is required
 - Quality factor for one mode at a time
 - Need to change the boundary conditions for each bound and recalculation of the model each time

Perfectly Matched Layer (PML)

- Modes of an open optical micro-cavity radiate into surroundings
- PML acts as an artificial boundary to truncate the computation domain
- PML as an anisotropic absorber – modification of the diagonal permittivity and permeability tensors of the absorber
PML: Mathematical Details

Oxborrow’s Master FEM Equation

\[
\int_V \left(\nabla \times \vec{H} \right) \epsilon^{-1} \left(\nabla \times \vec{H} \right) - \alpha \left(\nabla \cdot \vec{H} \right) \left(\nabla \cdot \vec{H} \right) + \epsilon^{2} \vec{H} \cdot \mu \cdot \frac{\partial^2 \vec{H}}{\partial t^2} \right) \, dV
\]

Modified FEM Master Equation

PML in cylindrical coordinates

\[
\begin{align*}
\vec{\epsilon} &= \epsilon \vec{\Lambda}, \quad \vec{\mu} = \mu \vec{\Lambda}, \\
\vec{\Lambda} &= \left(\frac{\vec{r}}{r} \right) \left(\frac{s_z}{s_r} \right) \hat{r} + \left(\frac{r}{\vec{r}} \right) \left(s_z s_r \right) \hat{\phi} + \left(\frac{r}{\vec{r}} \right) \left(\frac{s_r}{s_z} \right) \hat{z} \\
s_r &= \begin{cases} \\
1 & 0 \leq r \leq r_m \\
1 - jG \left(\frac{r - r_m}{t_p} \right)^2 & r > r_m \\
1 & z < z_{ml} \\
1 - jG \left(\frac{z_{ml} - z}{t_{zl}} \right)^2 & z_{ml} \leq z \leq z_{mu} \\
1 & z > z_{mu} \\
1 & \frac{(r - r_m)^3}{3t_r^2} & r > r_m \\
\end{cases}
\end{align*}
\]

Our FEM model

- Full vectorial model – No transverse approximation
- PML along the computation box
- Important parameters can be extracted for various cavity geometries accurately:
 - Quality factors
 - Mode Volumes
 - Resonant Frequencies
 - Shapes of fundamental and higher order modes
- Quality factor of the disc resonator with the PML is 1.60×10^7
 - No prior knowledge of the mode frequency is required
 - Quality factor for all modes simultaneously
 - One time execution of the model

Fundamental TE mode of a 12 microns silica micro-sphere in air (False Colors)
Results: silica microsphere

Quality factor of fundamental TE modes at 850nm

Quality factor of fundamental TM modes at 850nm
Conclusions

- Excellent agreement between the simulation and analytical results
- Third generation model - No transverse approximation and with PML
- Model is applicable to any axisymmetric micro-cavity geometries such as discs and toroids