Simulation of Laser-Material Interactions for Dynamic Transmission Electron Microscopy Experiments
Overview: The LLNL DTEM is a nanosecond-scale in situ TEM with single-shot capability

DTEM adds two lasers to a conventional TEM to enable:

- Driving sample events with extreme spatiotemporal temperature gradients
- Real-space imaging and diffraction with ~15 ns exposures
- Enough signal in one exposure to form a complete image (up to 2×10^9 electrons)

DTEM's single-shot approach lets you capture unique, irreversible events on the nm and ns scale
Scientific Context: DTEM enables applications in physics, materials science, chemistry, and biology

<table>
<thead>
<tr>
<th>Structural Materials</th>
<th>Solid State Reactions</th>
<th>Catalytic Reactions</th>
<th>Biological Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Diffusionless phase transformations (martensites)</td>
<td>• Reactive Multilayer Foils (RMLF)</td>
<td>• Nanowire and nanoparticle growth</td>
<td>• Dynamics of cellular modification in the presence of toxins</td>
</tr>
<tr>
<td>• Dislocation dynamics nucleation/interactions</td>
<td>• Small scale diffusional transformations in thin films (electrical devices)</td>
<td>• Catalyst/substrate interactions in gaseous and liquid environments</td>
<td>• Pathogen identification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Radiation damage in organic molecules</td>
</tr>
</tbody>
</table>

α-phase

β-phase

Lens shaped β grains

Laser heating

β-grains

Electron Pulse

reaction front

drive initiation

Lawrence Livermore National Laboratory
LLNL-PRES-458677
Current DTEM performance enables 15 ns diffraction contrast imaging.

The latest upgrades enable images of dislocations, stacking faults, and other microstructural features in a single 15 ns exposure.

Previously, these features could have only been seen by accumulating a large number of pulses.
Quantitative interpretation of DTEM experiments requires an understanding of laser-material interaction

Two aspects:

- **Laser absorption**
 - Polarized light incident at an angle onto nanostructured materials
 - Spatial distribution of absorption is important and complicated

- **Heat diffusion**
 - Normal direction (~100 nm) is a fast (few ns) 1D problem
 - Transverse direction (~50 µm) is a slow (many µs) 2D problem
 - Transformations and reactions are a nonlinear heat source/sink
Laser absorption is calculated in a 3D scattered-wave formalism

- User specifies wavelength, complex vector polarization, incident angle, geometry, and complex $\varepsilon(\omega)$ for each material
- This example is 1 µm diameter, 85 nm thick $\text{Ge}_2\text{Sb}_2\text{Te}_5$ on a 50 nm Si_3N_4 membrane hit with 1.06 µm p-polarized light at 42.5°
- Standard single-frequency scattered-wave formalism with perfectly matched layers and scattering boundary conditions
- Direct PARDISO solver is fast, stable, memory-hungry
- Validated against analytical solutions for planar thin-film stacks
- Volumetric absorption can couple directly into subsequent heat diffusion simulations
Laser absorption shows interesting three-dimensional polarization/wavelength dependence

1.06 µm P-polarized

532 nm S-polarized

Example is a 0.8 µm disk
Plots show absorbed power density

532 nm P-polarized
There is also a strong size dependence for diameters much less than λ.

Absorption profile halfway through the thickness of the disk for 1.06 μm light.
Experiments show absorption to be very inhomogeneous, and this affects phase transformations and morphology evolution.

- Experiments show certain spots around the edges consistently melt long before the rest of the material gets hot.
- Once laser shuts off (at $t \sim 12$ ns), the heat can diffuse and equalize—but the damage is already done.

Collaboration with S. Meister and Y. Cui, Stanford
DTEM can also track solid-liquid phase transformation fronts

- DTEM captures rapid lateral solidification front moving at ~3.5 m/s near edge of an elliptical laser spot
- Microstructural evolution is of interest and depends on nonlinear nonequilibrium dynamics at the front

Heat of transformation creates nonlinearity that can be handled within an enthalpy formalism

- Computer solves directly for enthalpy density, not temperature
- Defined functions calculate the actual temperature and phase fractions in post-processing
- Essence of the method is in an appropriate nonlinear enthalpy-dependent diffusivity
- Smoothed corners and artificial diffusivity in mixed-phase regions stabilize the solution
- Fifth-order finite elements provide high precision while keeping reasonable computational costs
- A practical compromise: Simpler than phase field, but neglects kinetics
Simulation quantitatively predicts anisotropic collapse of mixed-phase region followed by slow resolidification.
Simulation quantitatively predicts anisotropic collapse of mixed-phase region followed by slow resolidification.
Summary

- We have a TEM that can perform single-shot in situ experiments on the scale of nanometers and nanoseconds
 - Example applications include chemical reactions and phase transformations
 - Reveals transient material structures that couldn’t be seen any other way
- Understanding experimental results depends on understanding laser-material interactions
- Simulations provide handle on two important aspects of this
 - Geometrical effects in laser absorption
 - Nonlinear heat flow coupled with transformations