

Effect of an Iron Yoke of the Field Homogeneity in a Superconducting Double-Helix Bent Dipole

Dr. Philippe J. Masson, Dr. Rainer Meinke

Advanced Magnet Lab pmasson@magnetlab.com

Boston, MA – October 7th, 2010

• Particle accelerators come in two basic designs, linear (linac) and circular (synchrotron, shown below).

AML - Philippe J. Masson - 10/05/2010

DH Combined Function Magnet

- Double-Helix[™] winding enables the development of combined function magnets
- Beam with horizontal spread in bent dipole-quadrupole combined function magnet

Introduction

- Particle accelerators require strong dipole fields
- Field homogeneity is of utmost importance
 - Any higher order fields will distort the beam
- Double Helix technology allows for perfect control of the field multipole content
- Iron yokes are used to
 - Enhance the field
 - shield the field
- Iron non-uniform magnetization generate multipole order fields that need to be quantified
- DH magnets are designed to compensate for the field distortion stemming from the iron yoke magnetization

Magnet Specifications

- Aperture 255 mm
- 10 layers
- 1.5 mm OD cable
- Variable Dipole field
 - 2.62 T without iron
 - 3.2 T with iron yoke
- Axis radius 2 m
- Operating current 1000 A

Iron magnetization will generate multipole components in the magnet bore. It is important to quantify them and compensate for undesired effects.

- In order to isolate the effect of the iron yoke, the DH winding is models as a perfect source of dipole field
- The minimum dimension of a non-saturated iron yoke is determined
- The effect of the iron is calculated for current from 100 A to the nominal 1000 A
- At the maximum current the effect of iron saturation is investigated through reduction of the iron yoke thickness

- 2D and 2D axial symmetry simulations
 End effects are neglected
- Fourier analysis performed with Excel solver
 - Values lower than 1e-6 are considered null
 - Only the first 15 harmonics are considered

STRAIGHT MAGNET

Geometry, Sources and Boundary Conditions

9

Magnetic Flux Distribution Without Iron

Effect of an Iron Yoke of the Field Homogeneity in a Sc. DH Bent Dipole

AML - Philippe J. Masson – 10/05/2010

Iron Yoke Dimensions

• Flux density in iron yoke should be lower than 2 T @ 1000 A

Effect of an Iron Yoke of the Field Homogeneity in a Sc. DH Bent Dipole

11

AML - Philippe J. Masson – 10/05/2010

• Bore field shows no saturation up to nominal current

• The iron yoke creates both a **sextupole** field up to **0.08%** and a **decapole** field up to **0.035%** of the dipole field at nominal current.

Effect of Iron Saturation – Flux Density Distribution

Effect of an Iron Yoke of the Field Homogeneity in a Sc. DH Bent Dipole

AML - Philippe J. Masson - 10/05/2010

• Bore field decreases as iron becomes more saturated

- Iron saturation leads to a sextupole of up to 1.1% and a decapole field of up to 0.15 %
- As the field increases in the iron, it becomes more "uniformly" magnetized lowering the multipole fields.

BENT MAGNETS

Geometry, Sources and Boundary Conditions

Effect of an Iron Yoke of the Field Homogeneity in a Sc. DH Bent Dipole

18

Effect of Bending on Multipole Content

- Bending the magnet creates a strong quadrupole field (~1%) and a sextupole component (~0.03%)
- Current is adjusted in the model to compensate for the multipole content (<1e-6) allowing for the effects of the iron to be isolated

Effect of an Iron Yoke of the Field Homogeneity in a Sc. DH Bent Dipole

AML - Philippe J. Masson – 10/05/2010

Flux Density Distribution

Effect of an Iron Yoke of the Field Homogeneity in a Sc. DH Bent Dipole

AML - Philippe J. Masson – 10/05/2010

• Bore field shows no saturation up to nominal current

 The bent iron yoke creates a strong quadrupole field up to 9% at low field, a strong sextupole field up to 0.22% of the dipole field. A quadrupole and decapole field become significant after 800 A (0.02%)

Effect of Iron Saturation – Field Plots

Effect of an Iron Yoke of the Field Homogeneity in a Sc. DH Bent Dipole

• Bore field decreases as iron becomes more saturated

Multipole Content for Saturated Yoke

- Iron saturation leads to a quadrupole of up to 1.1%, a quadrupole field of up to 0.7%, a decapole field up to 0.1% and a small octopole appears at high saturation.
- As the field increases in the iron, it becomes more "uniformly" magnetized lowering the multipole fields.

- Because of its shape, the iron yoke of a bent dipole has a much stronger effect on field uniformity than a straight one.
- The multipole fields created would have a significant effect on the beam and need to be compensated.
- The magnitude of the multipole fields depends strongly on the operating current which makes active compensation necessary
- The Double-Helix[™] magnet technology enables the development of bent combined function magnets