Simulation of the Spread of Epidemic Disease Using Persistent Surveillance Data

Yu Liang1, Zhenjun Shi1, S. I. Sritharan1 and Hui Wan2

1Central State University, Wilberforce, Ohio
2Wright State University, Dayton, Ohio
Agenda

• Significance of Mathematical Modeling in Epidemic Disease.
• SIR (Susceptible-Infected-Recovered) --family models and their shortcomings.
• Principle of SIR-HT (Heat Transfer) model, which is proposed as an innovative method in this field.
• Mathematical Description of SIR-HT Model
• Simulation Using COMSOL 3.5a
• Conclusion and Future Work
Significance of Mathematical Modeling in Epidemic Disease

• Explore the transmission mechanism of epidemic diseases;

• Obtain insight into potential cost and outcomes of the breakout of the disease;

• Evaluate the effectiveness of prevention / control strategies such as immunization and segregation.
Existing Epidemic Models (Deterministic)

- **S**: susceptible
- **I**: infected
- **R**: recovered
- **μ**: death
- **B**: birth
- **M**: immunity from mother
- **E**: exposed rate in latent period

Recovered People return to susceptible

Birth/death

Exposed rate

Immunity from Mom
SIR Model – Mathematical Description

Define $s(t)$, $i(t)$ and $r(t)$ be the proportion of the number of susceptible, infected and recovered individuals at time t

\[
\begin{align*}
\frac{ds(t)}{dt} &= -\beta s(t) i(t) \\
\frac{di(t)}{dt} &= \beta s(t) i(t) - \gamma i(t) \\
\frac{dr(t)}{dt} &= \gamma i(t)
\end{align*}
\]

$s(t) + i(t) + r(t) = 1$

Scalar β is contact rate; scalar γ is the mean recovery rate
Short-Comings of Existing Epidemic Model

• In an isolated community: no interaction between neighboring communities.

• No spatial variable such as distance, location, route of transmission, etc.

• No transmission media.
Derivation of SIR-HT Model

SIR-HT, which couples SIR, GIS and PS based on heat-transfer platform.
Principle of SIR-HT: Similarity in Diffusion Mechanism of Disease and Heat

Spread of Epidemic Disease
- Contact infection
- Personnel's movement

Diffusion of Heat Energy
- Vibration of atom influences neighboring atoms
- Free electrons carry energy
Principle of SIR-HT: SIR-HT vs. Standard Heat-transfer

<table>
<thead>
<tr>
<th>SIR-HT model</th>
<th>Counterpart in Heat transfer model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of infective population</td>
<td>temperature ((T))</td>
</tr>
<tr>
<td>Change rate of infective population</td>
<td>Heat-flux((Q))</td>
</tr>
<tr>
<td>Personnel exchange between neighboring community</td>
<td>Conductivity ((k))</td>
</tr>
<tr>
<td>Road (including local, high-way, free-way)</td>
<td>Thin but highly conductive layer</td>
</tr>
<tr>
<td>Terrain conditions (lake, mountain, etc)</td>
<td>Boundary conditions</td>
</tr>
<tr>
<td>Persistent surveillance data</td>
<td>Initial conditions</td>
</tr>
<tr>
<td>Conservation of infective</td>
<td>Law of conservation of energy</td>
</tr>
<tr>
<td>The transmission of infectious between neighboring communities is proportional to the difference of their infective rate</td>
<td>Fourier law</td>
</tr>
</tbody>
</table>
Mathematical Description of SIR-HT: Governing Equations

\[
\rho C_p \frac{\partial i(X,t)}{\partial t} + \nabla \cdot (-K(X) \nabla i(X,t)) = Q_{\text{inf}} - Q_{\text{rec}}
\]

\[
Q_{\text{rec}} = \gamma(X)i(X,t)
\]

\[
Q_{\text{inf}} = \beta(X)s(X,t)i(X,t)
\]

- \(\beta(X)\) is location-related **contact infection tensor**;
- \(\gamma(X)\) is **recovery rate**;
- \(\rho\) is population density;
- \(C_p\) is a time-scaling coefficient (dimensionless);
- \(Q_{\text{inf}}\) is the incremental infective caused by contact infection;
- \(Q_{\text{rec}}\) is the decremented infective caused by recovery;
- \(\nabla \cdot (-K(X) \nabla i(X,t))\) indicates the infective change caused by inter-community personnel exchanging.
Mathematical Description of SIR-HT: BCs Introduced by Road

\[
\begin{align*}
 d_{rd} \rho_{rd} C_{rd} + \nabla \cdot \left(-d_{rd} \kappa_{rd} \nabla i(X,t) \right) &= -n \cdot q \\
 q &= -K(X) \nabla i(X,t)
\end{align*}
\]

- \(d_{rd} \) is transportation bandwidth;
- \(\rho_{rd} \) is the passenger density;
- \(C_{rd} \) is a coefficient;
- the transportation network is translated into boundary condition, denoted as \(\partial \Omega_{rd} \);
- Counter-part term in COMSOL: thin but highly conductive layer
Mathematical Description of SIR-HT: Initial Condition and BCs

• **Initial conditions** are derived from persistent surveillance data;

• The disease **transmission media** is defined according to geographic information.
Flowchart of SIR-HT Framework

1) Formulate the heat-transfer medium according to geographic information

2) Instill the SIR model into SIR-HT model

3) Obtain the initial/boundary conditions of the heat transfer problem according to persistent surveillance data

4) Simulate the spread of epidemic disease by solving the transient heat-transfer problem
Simulation Experiment: Spread of Flu at a Sample Site Near Minneapolis

Map of a sample site near Minneapolis

Heat-transfer model derived from sample site
Experiment: Animation of the Spread of Epidemic Flu
Experiment: Spread of Epidemic Flu with Time

Day 1

Day 3

Day 5

Day 10
Conclusions

• A novel deterministic epidemic model is developed and implemented using COMSOL 3.5a;
• The simulation result shows infectious disease spread within residential area or along transportation network, which is basically consistent with our expectation;
• A more critical validation about the SIR-HT model is needed with the support and collaborations of experts in multidisciplinary areas such as medical science, sociology, statistic, optimization, geology science, and public health, etc.
Future Work

• **Validation** of proposed mathematical model;
• Effect of public **prevention strategy** and **medical treatment** over the SIR-HT;
• Introduction probability into SIR-HT model to achieve **stochastic** description about the spread of epidemic disease;
• Effects of **air-line** transportation over SIR-HT;
• **Global** tracking/analysis platform for epidemic disease;
• Promote SIR-HT framework into other applications such as immigration of locust, spread of cancer cells, etc.
Acknowledgements

• Dr. Bjorn Sjodin, COMSOL Inc.;
• Organizers of COMSOL 2010;
• Ms. Olga Mendoza-Schrock, US Air Force Research Lab;
• Dr. Asit Saha and Prof. Robert Marcus, Dept. of Math/CS, Central State University;
• Center for Allaying Health Disparities through Research and Education (CADRE) of Central State University;
• This project was funded by Minority Leader Program of US Air force with contract number FA8650-05-D-1912 and was approved for public release via 88 ABW-10-5341.
Question and Answer

Contact:
• Email: yliang@centralstate.edu
• Phone: 937-376-6160