Computational Modeling of Synthetic Jets

David Durán
Omar López, Ph.D.

Mechanical Engineering Department
Universidad de los Andes, Bogotá - Colombia
1. Motivation
2. Methodology
3. Dimensional analysis of the problem
4. 3D Piezoelectric Disk Model
5. Axisymmetric SJ Actuator Model
6. Numerical Results
7. Conclusions
8. Contact
9. References
Applications

- Separation Control
- Flow Control
- Mixing
- Heat Transfer

Why Comsol?

- Multiphysics Problem
- Other simulations only include Navier-Stokes

Tridimensional Schematic of the Synthetic Jet Actuator. Image from (Morpheus Laboratory, University of Maryland, 2009)
Methodology

1. Validation of the Disk 3-D Model
2. Axisymmetric Model
3. Analysis of the Relevant Dimensionless Numbers according to different parameters of the model
4. Conclusions
• The vortex ring formation depends on the velocity field of the fluid at the aperture of the Actuator.
• The average velocity cannot be the characteristic velocity because it is zero.
• Max. Velocity (U) was chosen as the characteristic velocity.

\[U = f(d, v, \omega) \]

• Since there are 4 variables and 2 dimensions, the problem can be described with 2 non dimensional numbers:

Reynolds Number: \[Re = \frac{Ud}{v} \]

Stokes Number: \[S = \sqrt{\frac{\omega d^2}{v}} \]
These two numbers be related through the Inverse of the Strouhal Number:

\[
\frac{1}{Sr} = \frac{Re}{S^2}
\]

According to Holman et al. 2005, the criterion of formation for synthetic jets can be defined as follows:

\[
If \quad \frac{1}{Sr} > C \quad \rightarrow \text{jet}
\]
3D Piezoelectric Disk Model

Schematic of the piezoelectric diaphragm showing all the components of the same. Image from (Mane, Mossi, & Bryant, 2008)

3D Model of the Disk in Comsol 3.4
The graph in black is from the Datasheet of THUNDER. Manufactured by FACE International.
Axisymmetric SJ Actuator Model
Numerical Results

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Diam. (m)</th>
<th>height (m)</th>
<th>Potential (V)</th>
<th>viscosity (Pa.s)</th>
<th>Vel max. (m/s)</th>
<th>Reynolds</th>
<th>Stokes</th>
<th>1/Sr</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2e-03</td>
<td>1.4e-03</td>
<td>25</td>
<td>1e-06</td>
<td>3.27e-03</td>
<td>6.54</td>
<td>5.01</td>
<td>0.26</td>
<td>no jet</td>
</tr>
<tr>
<td>2</td>
<td>2e-03</td>
<td>1.4e-03</td>
<td>50</td>
<td>1e-06</td>
<td>3.27e-03</td>
<td>6.54</td>
<td>5.01</td>
<td>0.26</td>
<td>no jet</td>
</tr>
<tr>
<td>3</td>
<td>2e-03</td>
<td>1.4e-03</td>
<td>200</td>
<td>1e-06</td>
<td>3.02e-03</td>
<td>6.05</td>
<td>5.01</td>
<td>0.24</td>
<td>no jet</td>
</tr>
<tr>
<td>4</td>
<td>2e-04</td>
<td>1.4e-03</td>
<td>100</td>
<td>1e-06</td>
<td>1.21e-01</td>
<td>24.2</td>
<td>0.50</td>
<td>96.29</td>
<td>no jet</td>
</tr>
<tr>
<td>5</td>
<td>2e-04</td>
<td>1.4e-03</td>
<td>500</td>
<td>1e-06</td>
<td>1.21e-01</td>
<td>24.2</td>
<td>0.50</td>
<td>96.29</td>
<td>no jet</td>
</tr>
<tr>
<td>6</td>
<td>2e-04</td>
<td>1.4e-03</td>
<td>100</td>
<td>1e-07</td>
<td>0.135</td>
<td>270</td>
<td>1.59</td>
<td>107.43</td>
<td>jet</td>
</tr>
<tr>
<td>7</td>
<td>2e-04</td>
<td>1.4e-03</td>
<td>100</td>
<td>1e-06</td>
<td>0.146</td>
<td>29.2</td>
<td>0.50</td>
<td>116.18</td>
<td>jet</td>
</tr>
</tbody>
</table>
\[d=2e^{-4} \text{ m}\]
\[V=100 \text{ V}\]
\[f=1 \text{ Hz}\]
\[v=1e^{-6} \text{ Pa.s}\]
\[\text{density}=1\text{kg/m}^3\]
\[1/\text{Sr}=96.29\]
d=2e-3 m
V=100 V
f=1 Hz
v=1e-9 Pa.s
p=1kg/m3
1/Sr=107.43
• The fluid velocity is weakly dependant of the applied voltage
• The fluid velocity is strongly dependant of the aperture diaphragm
• The jet formation criterion is in the order of hundreds
• There exists vortex ring formation in the inside of the cavity
• Study of the influence of other geometric parameters such as: actuator’s height, Disk diameter, etc
• Study of the influence of the frequency in the SJ formation
• Coupling of the acoustics module
• Comparison with the Lumped Element Model
• Study of the influence of the vortex rings interactions with the diaphragm in the quality of SJ formation
Contact: David Durán
Universidad de los Andes
Departamento Ing. Mecánica (Bogotá), Colombia

da-duran@uniandes.edu.co
tel: +57 315-8164260

