Bern University of Applied Sciences
Engineering and Information Technology

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

COMSOL Conference 2010, Paris Energy Harvesting from Variation in Blood Pressure through Deformation of Arterial Wall using Electro-Magneto-Hydrodynamics

Alois Pfenniger^{1,2}, Volker Koch², Andreas Stahel², Rolf Vogel¹

¹ARTORG Cardiovascular Engineering, University of Bern, Switzerland ²Engineering and Information Technology, Bern University of Applied Sciences, Switzerland

Outlook

UNIVERSITÄT BERN

- Introduction
- Simulation setup
- Simulation results
- > Validation
- Conclusion

Introduction

This cyclic deformation can be used to move an electric conductor in a magnetic field

UNIVERSITÄT BERN

ARTORG CENTER

BIOMEDICAL ENGINEERING RESEARCH

- $\rightarrow\,$ an electric field is induced
- > A load can be connected to the electric conductor's terminals
 - \rightarrow energy is extracted

http://www.physiologie-online.com/ana_site/physio07.html

Electro-Magneto-Hydrodynamics (EMHD)

UNIVERSITÄT BERN

 $E_{ind} = -u_{flow} \times B$

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

Friedrich Hofmann, Fundamental principles of Electromagnetic Flow Measurement, 3rd Edition, KROHNE Messtechnik GmbH & Co, 2003

Proposed concept: Use deformation of arterial wall through variation in blood pressure to drive a highly electrically conductive fluid in a compartment outside the artery.

Geometry and Principle

UNIVERSITÄT BERN

 u^{b}

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

> Artery dimensions: 20 mm length, 10 mm ID, 12 mm OD

17. November 2010

Simulation Setup

UNIVERSITÄT BERN

- > 5 « application modes » used in COMSOL:
 - Incompressible Navier-Stokes
 - Solid, Stress-Strain
 - Moving Mesh
 - Magnetostatics, No Current
 - Conductive Media DC
- > Mesh partly drawn manually:
 - avoid element inversion due to mesh deformation
 - ensure proper meshing at the boundaries between the different physics
 - reduce computational efforts

Application Mode #1

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

17. November 2010

Application Modes # 2, 3 & 4

Solid, Stress-Strain (isotropic, linear elastic material)

 $\sigma = D \cdot \varepsilon$

 Moving Mesh (mesh nodes are perturbed to conform with the moving boundaries)

 \boldsymbol{u}^{b}

UNIVERSITÄT BERN

ARTORG CENTER

BIOMEDICAL ENGINEERING RESEARCH

x = x(X, Y, t)y = y(X, Y, t)

> Magnetostatics, No Current

$$\nabla \cdot (-\mu_0 \mu_r \nabla V_m + B_r) = 0$$

Summary

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

Equations >

> $\nabla \cdot \vec{u} = 0$ $\rho \cdot \frac{\partial \vec{u}}{\partial t} + \rho(\vec{u} \cdot \nabla)\vec{u} = -\nabla p + \mu \nabla^2 \vec{u} + \vec{F}$ $\sigma = D \cdot \varepsilon$ $\nabla \cdot (-\mu_0 \mu_r \nabla V_m + B_r) = 0$

Conservation of mass

Conservation of momentum

Stress-Strain, linear elastic

Magnetic potential

 $\nabla \cdot (-\sigma \cdot \nabla \varphi + \sigma \cdot \vec{u} \times \vec{B}) = 0$ $\vec{J} = \sigma \cdot (\vec{E} + \vec{u} \times \vec{B})$ Electric potential

- Couplings:
 - Fluid ↔ Structure: surface load, moving wall
 - Structure \rightarrow Moving mesh
 - EMHD: $\vec{E} = -\vec{u} \times \vec{B}$, $\vec{F} = \vec{J} \times \vec{B}$
- Constraints: >
 - Symmetry, fixed/free walls, magnetic/electric insulation...
 - Kirchhoff's mesh rule for the generator and load resistor

Solver sequence

UNIVERSITÄT BERN

- > Stationary:
 - Solve for internal resistance of tube
 - Solve for distribution of magnetic field
- > Transient (segregated solver, two groups):
 - Group 1: Fluid-structure interaction (Incompressible Navier-Stokes + Solid, Stress-Strain + Moving Mesh)
 - Group 2: Electrical domain (Conductive Media DC + Kirchoff's mesh rule)

Running the Simulation

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

Input: pressure pulse

Output: power

17. November 2010

$u^{{}^{\scriptscriptstyle b}}$

Arterial Wall and Membrane Deformation x- and z-Velocity

UNIVERSITÄT BERN

Magnetic flux density

UNIVERSITÄT BERN

Electric Potential & Current Density

UNIVERSITÄT BERN

Validation of the Simulation

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

- > Qualitative: Influence of force counteracting the fluid's motion
- > Quantitative: Energy conservation

Energy production per cardiac cycle for 1/8 of the geometry: + 26.4 nJ

Difference in strain energy of arterial wall when energy is extracted: - 29.4 nJ

 \rightarrow Error: 11%

Conclusion

- > Using the multiphysics capabilities of COMSOL, it was shown that the proposed concept can be simulated
- The simulation was validated by considering energy conservation: the error between loss of elastic energy stored in arterial wall and generated energy amounts to 11%
- A parameterised evaluation is necessary to find the optimal geometry in terms of generated power