Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene

M. Beckmann-Kluge1, F. Ferrero1, V. Schröder1, A. Acikalin2 and J. Steinbach2,
1BAM Federal Institute for Materials Research and Testing,
2Technical University Berlin
I. Introduction to topic and motivation

II. Numerical Model with REL and Comsol Multiphysics

III. Results of different numerical approaches

IV. Conclusion and outlook
Introduction to TFE

- Tetrafluoroethylene (TFE, C_2F_4) is monomer of Polytetrafluoroethylene (PTFE) and other copolymers (100.000 t/year)

- PTFE is resistant to most reactive and corrosive chemicals and has non-sticky properties
Motivation

- Several incidents in PTFE-production-plants in the last decades
- TFE is a decomposable gas → possibility of explosive decomposition
- Sources for ignition:
 - Spark ignition, electrostatic
 - Hot surfaces → content of this work
- Research project subsidized by PlasticsEurope to determine hazardous conditions, started 2007
- Exothermic Dimerization reaction of TFE to Octacyclofluorobutane can cause ignition

\[2C_2F_4 \leftrightarrow C - C_4F_8 \quad \Delta H_R = -103 \left(\frac{kJ}{mol_{TFE}} \right) \]
Reaktion Engineering Lab

- FEM simulation without fluid dynamic
- Easy integration of complex reaction kinetics
- Thermodynamic properties are calculated via the NASA polynomial coefficients
- Energy and mass balance are solved
Validation data base by experiments

3-dm³ autoclave

- thermocouple for gas temperature
- pressure transducer
- internal volume (cylindrical reaction chamber)

Steel vessel

Aluminium (with heating jacket)

0.2-dm³ autoclave
1st Model: Dimerization – Reaction

Forward reaction

\[2C_2F_4 \xrightarrow{f} c - C_4F_8 \]

2. order reaction

\[k_f = 82800 \left[\frac{m^3}{mol \cdot s} \right] \cdot \exp \left(\frac{-105200 [J/mol]}{RT} \right) \]

\[r_f = \left(c_{C_2F_4} \right)^2 \cdot k_f \]

New 2-stage kinetics was determined

Backward reaction

\[c - C_4F_8 \xrightarrow{b} 2C_2F_4 \]

1. order reaction

\[k_f = 2.1 \cdot 10^{16} \left[\frac{m^3}{mol \cdot s} \right] \cdot \exp \left(\frac{-310961 [J/mol]}{RT} \right) \]

\[r_b = c_{c-C_4F_8} \cdot k_b \]
Enhanced reaction net in REL and COMSOL CFD Model

<table>
<thead>
<tr>
<th>Reaction</th>
<th>RO</th>
<th>A0 in [m³ mol⁻¹ s⁻¹] bzw. [s⁻¹]</th>
<th>Ea in [J/mol]</th>
<th>ΔH_r^0 acc. NIST [kJ/mol]</th>
<th>ΔH_r^0 acc. REL (NASA Polynoms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂F₄ + C₂F₄ → C₄F₈</td>
<td>2</td>
<td>8.28E+04</td>
<td>105000</td>
<td>-166</td>
<td>-161,5</td>
</tr>
<tr>
<td>C₄F₈(c) → 2*C₂F₄</td>
<td>1</td>
<td>2.10E+16</td>
<td>310871</td>
<td>166</td>
<td>161,5</td>
</tr>
<tr>
<td>C₄F₈(c) → C₃F₆(e) + CF₂</td>
<td>1</td>
<td>1.58E+17</td>
<td>332580</td>
<td>154,3</td>
<td>164</td>
</tr>
<tr>
<td>C₃F₆(e) → C₂F₄ + CF₂</td>
<td>1</td>
<td>1.58E+13</td>
<td>346008</td>
<td>308,7</td>
<td>288</td>
</tr>
<tr>
<td>C₃F₆(c) → C₂F₄ + CF₂</td>
<td>1</td>
<td>1.78E+13</td>
<td>161501</td>
<td>308,7</td>
<td>288</td>
</tr>
<tr>
<td>C₃F₆(e) → C₃F₆(c)</td>
<td>1</td>
<td>1.00E+13</td>
<td>139767</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C₂F₄ → 2*CF₂</td>
<td>1</td>
<td>5.01E+16</td>
<td>301285</td>
<td>297</td>
<td>290,6</td>
</tr>
<tr>
<td>C₄F₈(c) + CF₂ → C₃F₆(e) + C₂F₄</td>
<td>2</td>
<td>1.00E+08</td>
<td>133032</td>
<td>-142,7</td>
<td>-126,5</td>
</tr>
<tr>
<td>C₄F₈(i) → 2*C₂F₄</td>
<td>1</td>
<td>1.00E+16</td>
<td>374070</td>
<td>309</td>
<td>-</td>
</tr>
<tr>
<td>C₄F₈(i) → C₃F₆(e) + CF₂</td>
<td>1</td>
<td>1.20E+16</td>
<td>384962</td>
<td>297,3</td>
<td>-</td>
</tr>
</tbody>
</table>
\[V_r \cdot \sum (c_i \cdot c_{p_i}) \frac{dT}{dt} = Q_{\text{reaction}} + Q_{\text{loss}} + V_r \frac{dp}{dt} \]

Pressure work is considered

dynamic calculation of alpha, depending on T(t) is implemented

Input window of REL
Prediction of the MITD with the REL method

experimental MITD = 310 °C, 5 bar, 0.2-dm³
Comparison of REL results and experimental values

- Bisektor
- + 20%
- - 20%
- MITD 3-dm³ REL in °C
- MITD 0,2-dm³ REL in °C
- MITD Rohr REL in °C

Partially heated pipe
Conclusions from REL method

Pro
- Easy to calculate
- Volume of vessel is considered
- Height of vessel can be considered (via alpha)
- Complex reaction net possible
- All predicted MITD on the safe side

Contra
- No fluid dynamic considered (buoyancy)
- Geometry specification can only be considered in calculation of alpha
- Prediction of MITD might be too conservative
Application modes in Multiphysics

Convection and diffusion mode: mass balance based on chemical reactions

Convection and conduction for heat transfer

Weakly compressible Navier-Stokes for impulse balance

\(R_{\text{TFE}}, R_{\text{Dimer}}, R \ldots \)

\(\Delta Q, c_p, \lambda, \rho \)

\(k_f, k_b \)

\(c_0, \rho, \eta, p \)

\(u, v \)

\(T(x) \)
FEM Model: Enhanced reaction net in COMSOL Multiphysics

additional reactions are important in the relevant temperature range (green)
Enhanced reaction net in COMSOL CFD Model

- 4 additional reactions and two additional species were integrated
- New reaction net shows very good numerical results
- Additional reactions prevent a too early runaway at lower temperatures
- At higher temperatures the primary dimerization reaction generates a runaway – ignition of decomposition reaction

\[
\begin{align*}
C_2F_4 + C_2F_4 & \leftrightarrow C_4F_8(c) \\
C_2F_4 & \rightarrow CF_2 + CF_2 \\
C_4F_8(c) + CF_2 & \rightarrow C_3F_6(e) + C_2F_4 \\
C_4F_8(c) & \rightarrow C_3F_6(e) + CF_2 \\
C_3F_6(e) & \rightarrow C_3F_6(c) \\
C_3F_6(c) & \rightarrow C_2F_4 + CF_2
\end{align*}
\]
Enhanced reaction net in COMSOL CFD Model

- New model shows for the volumes of 0.2-dm³ and 3-dm³ a maximal deviation of 10 K in the MITD
- For both volumes a pressure peak in the simulation could be observed and was taken as the ignition criterion

![Exponential pressure increase graph](image-url)
Comparison of CFD Simulation and experimental values, 0.2 dm³
Enhanced reaction net in COMSOL CFD Model - results

Comparison of CFD Simulation and experimental values, 3 dm³

MITD$_{\text{COMSOL}}$ in °C vs. MITD$_{\text{Experiment}}$ in °C

- Red dashed line: Bisektor
- Blue line: + 20%
- Black line: - 20%
- Green squares: MITD 3-dm³ COMSOL in °C
Conclusions from CFD method

Pro
- Most accurate prediction of MITD
- Complex geometries can be considered
- Complex fluid flow possible
- Complex reaction kinetics possible
- Partially heating possible

Contra
- Intense knowledge of software is necessary
- Long computational times
- Not applicable on standard PC
Outlook

Validation in larger volumes

- Tests in 100-dm³-vessel
- Vessel is fixed in rotational rack
- Tests for MITD in horizontal and vertical orientation will be carried out

- Prediction with COMSOL REL and Multiphysics was done
- MITD dependence on variation in geometry for similar volumes could be found when using COMSOL Multiphysics
100-dm³ vessel: construction

Permanent sealing with graphite gasket

Easy removable lid

From existing 6,5-dm³ autoclave

Trough put for 4 thermocouples, 90° offset
100-dm³ vessel:
Simulation of MITD, 5 bar TFE

Ignition criterion based on exponential pressure increase

Vertical orientation

\[p \text{ in bar (260 °C)} \]

\[p \text{ in bar (270 °C)} \]

COMSOL Conference, Paris, 17.11.2010 – 19.11.2010
100-dm³ vessel simulation: MITD dependence on geometry

Simplified geometry

real geometry

Temperature field at \(t(T_{\text{max}}) \) in °C

Max: 674.594

Max: 298.567

58 s

30 s

COMSOL Conference, Paris, 17.11.2010 – 19.11.2010
100-dm³ vessel simulation: MITD dependence on geometry

Comparison of p-t curves for different geometries (similar volume)

COMSOL Conference, Paris, 17.11.2010 – 19.11.2010
Prediction of MITD for 100-dm³-vessel
(simple geometry)

MITD dependence on pressure for 100-dm³-vessel

\[\text{MITD (°C)} = -27.474 \times \ln(p) + 313.96 \]