On a particle tracking technique to predict disinfection in drinking water treatment systems.

COMSOL Conference, Paris, 2010

B.A. Wols, J.A.M.H. Hofman, W.S.J. Uijttewaal, J.C. van Dijk
Contents

Introduction

Particle tracking technique

Test cases

Application of water treatment with ozone
Disinfection of drinking water

- Removing micro-organisms up to 99% to 99.9%

Introduction – why CFD with particle tracking?

Importance hydraulics

Ozone exposure

Disinfection By-products
Particle tracking technique

Stochastic differential equation for Brownian motion:

\[dX_t = f(t, X_t)dt + g(t, X_t)dW_t \]

\[X_t(0) = X_0 \]

Increments \(dW_t \) generated from random number generator
Particle tracking technique

The advection diffusion equation must be obeyed for particles:

\[
\frac{\partial C}{\partial t} + u_i \frac{\partial C}{\partial x_i} = \frac{\partial C}{\partial x_i} \left(D_{ij} \frac{\partial C}{\partial x_j} \right)
\]

Coupling by Fokker-Planck equation results in:

\[
dX_{i,i} = \left(u_i + \frac{\partial D}{\partial x_i} \right) dt + \sqrt{2D} dW_{i,i}
\]
Particle tracking technique – numerical solution

The diffusion part, Euler scheme:

\[Y_{n+1} = Y_n + \frac{dD}{dx} \Delta t + \sqrt{2D} \Delta W_n \]

Milstein scheme:

\[Y_{n+1} = Y_n + \frac{dD}{dx} \Delta t + \sqrt{2D} \Delta W_n + \frac{1}{2} \frac{dD}{dx} ((\Delta W_n)^2 - \Delta t) \]
Test case: wall treatment

Diffusion coefficient:

$$Y_{\text{max}}/L$$

$$0.14$$
Test case: wall treatment

Particle positions after 1000 steps:

Euler

Milstein
Test case: channel flow Elder

Logarithmic velocity profile
Parabolic diffusion profile
Theoretical dispersion coefficient of: \[D_L = 5.86 u \cdot h \]
Implementation in COMSOL

COMSOL Multiphysics with k-ε turbulence model

Flow fields are captured from fem-structure in Matlab

Particle tracks are resolved in Matlab
Application water treatment

Ozone installation
Application: Water Treatment

Flow fields

k-ε turbulence model
Application water treatment

Ozone concentration

Advection-diffusion
(+ reaction)
Verschillende configuraties
Filmpje, als het werkt…
Application water treatment – Particle trajectories
Distribution of CT values (ozone exposure)

Log inactivation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1.43</td>
</tr>
<tr>
<td>No baffles</td>
<td>1.18</td>
</tr>
<tr>
<td>Add baffles</td>
<td>1.88</td>
</tr>
<tr>
<td>Turn vanes</td>
<td>1.86</td>
</tr>
<tr>
<td>Plug flow</td>
<td>2.18</td>
</tr>
</tbody>
</table>
Conclusions

Development of particle tracking routine

- Using COMSOL multiphysics with a k-ε turbulence model
- That obeys diffusion and advection
- No problems at the walls

Optimization of drinking water treatment installations established