
A technology demonstrator called the “acoustic hyperlens”, constructed using metamaterials, can transform near field waves into far field waves. It is the inherent anisotropic properties of this metamaterial that facilitates the transformation. Prior

“acoustic hyperlens” research has focused on sound wave propagation along air gaps between radial fins made of heavy material such as brass. Our research changes the fin geometry to further explore the effect of different anisotropic properties on

sound wave propagation. Using the COMSOL acoustics module, re-orientation of the fins perpendicular to the sound source was explored. We observed amplitude enhancement of the original sound source through redirection of the sound wave

propagation. The benefits of our research can potentially improve noise reduction solutions and enhance signal to noise ratio through redirection of the sound waves back to the transducer.
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Introduction

Enhancing and Redirecting Sound Wave Propagation Utilizing Metamaterials

Anisotropic properties of metamaterials
are manipulated by varying mass density and bulk modulus [2]

Very little leakage outside the MM 

Figure 3: COMSOL simulation of existing Acoustic Hyperlens improving the resolution of the acoustic image [3]

Two Distinct Sound Fields

Continuous separation of multiple 
sound source into the far field

Results

Figure 8: Simulation of Speaker Standalone at 9 kHz
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propagation
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Figure 10: Optimized Model: 5 fins, 450, 21 mm width of first fin, 14mm spacing, 14mm thickness, 9 kHz

Phase 1: Design Prototype
● Using COMSOL Acoustics with LiveLink for SolidWorks to  

manipulate the parameters and optimize the fin design.

Phase 4: Prototype Performance
● Establish baseline for speaker standalone.
● Assemble prototype and measure performance.

Phase 2: Manufacture Prototype
● Brass prototype manufactured in house at Jabil using 

CNC Milling machine.

Figure 5: Exploded view of optimized design

Phase 3: Validate Test Setup
● Validate test setup on Klippel’s Near Field 

Scanner (NFS) using existing hyperlens.

Figure 7: New prototype with support fixture

Figure 1: Existing Radial Geometry of Acoustic Hyperlens Figure 2: NEW Re-oriented Perpendicular  Geometry
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Materials & Methods

# of Fins (5 - 15)

Fin Width 
(19.05 - 24.5 mm) 

Fin Relation
(0 - 65 Degrees)
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(5 - 15 mm)

Figure 4: Manipulated parameters and ranges
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Figure 9: Simulation of Prototype at 9 kHz

Figure 12: Measurement along cut arc of prototype vs. speaker standaloneFigure 11: COMSOL simulation along cut arc of prototype vs. speaker standalone

Figure 6: Prototype mounted on Near Field Scanner

2D Structure (Group of 4)                                                          3D Structure (Group of 6)

● In contrast to the old Acoustic Hyperlens, the new orientation has the ability to enhance and redirect 
sound waves.

● The anisotropic properties of metamaterials have a major effect on sound wave propagation and 
directivity.

● Noise reduction applications are possible using acoustic metamaterials as per the 3D structure 
shown above.
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30 to 40 dB of reduction at 
3kHz.

Notice how the 3D 
structure contains high 

levels of sound pressure 
within its internal 

boundaries.

40 dB of reduction 
at 4kHz
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Although measured results do not 
match the magnitude predicted in 

the COMSOL simulation, a 
broadband increase in SPL is 

evident

Speaker Standalone

Prototype

Figure 13: COMSOL 2D simulation consisting of 4 individual structures  Figure 14: COMSOL 3D simulation consisting of 6 individual structures  
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