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Abstract: This paper describes a simulation study 
performed with the goal of quantifying the correlation 
between violin design and sound quality. The 
investigation first explored the resonant modes of the 
front plate of a violin by examining its predicted 
eigenfrequencies and normal modes. Chladni patterns 
of increasingly complex plate shapes were modeled 
using COMSOL® Structural Mechanics - Plate 
Module, version 5.4. The plate had a thickness of 10 
mm with no initial velocity or displacement, and all 
edges were unconstrained with no loads. The materials 
used were AISI 4340 steel and a generic soft wood. 
The study examined eigenfrequencies between 175 Hz 
and 2700 Hz, a range chosen based on the pitch range 
of the violin.  
 
Three geometries were studied, and changes in 
geometry demonstrated visible differences in the 
predicted Chladni patterns. By matching specific 
modes to experimental results, a refinement of the 
geometry was possible. If differences in resonant 
modes between diverse violin geometries can be 
properly modeled, they can create another metric 
which could be utilized in improving violin sound 
quality. For mass-produced violins, this could allow 
for a reduction in manufacturing costs while 
increasing sound quality. 
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Introduction 
 
Violins have been made and played for around 450 
years. During that time, they have gone through some 
very drastic changes, both in body geometry and 
material composition. In more recent years, luthiers, or 
violin makers, have also changed how violin plates are 
tuned. Hutchins1 popularized the use of Chladni 
patterns for violin plate tuning in 1983 and luthiers 
have been utilizing this technique ever since to 
optimize the vibration of violin front and back plates. 
 
Unfortunately, not all violins are made by hand. 
Student violins are often mass-produced and sold for 
cheaper prices, which often results in lower-quality 
violins. In order to help bring a better sound quality to 
these manufactured violins, the normal modes of a 
rendered violin were simulated and studied.  

A normal mode is a physical vibration pattern that 
occurs at a resonant frequency of a structure. Resonant 
modes are present in all structures, including a violin. 
Ernst Chladni2 was the first to discover a way to 
visualize these modes in a more macroscopic setting 
through what is now known as Chladni patterns. 
Chladni patterns were initially studied on simple 
geometries such as a square or a circle with a fixed 
constraint at its center. They were excited by running 
a violin bow along the edge of a thin plate covered 
with flour. As technology has progressed, they are 
more commonly excited by constraining the center of 
a thin plate to a loudspeaker which can stimulate the 
body more precisely1. When using simulation software 
to perform this experiment, the model has a fixed 
constraint at the center and is excited over a specific 
range of frequencies.   
 
The Chladni patterns of violins studied by Hutchins1 
have been used as a baseline for luthiers and 
researchers alike when studying the violin. Gough3 
investigated how each part of the violin affects its 
resonant modes, utilizing Chladni pattern simulations 
to analyze the front and back plates. Lu4 employed 
both simulation and experimental testing to study the 
composition of the material used for violin-making. 
Lu considered a more realistic violin plate and focused 
on the effect of material differences rather than 
geometry changes. The COMSOL Blog5 also details 
an application that models the Chladni patterns of 
various geometries and materials.  
 
This paper’s research focused on replicating physical 
patterns found by Hutchins as a first step towards 
improving the quality of manufactured violins. This 
was achieved through the refinement of several 
geometries and meshes to attain the most accurate 
representation of a physical experiment. Through the 
use of simulation software, manufacturers can utilize 
an affordable and computationally efficient way to 
check how a violin design will perform. 
 
Theory 
 
The model reported in this paper uses one physics 
interface: the 2D Structural Mechanics – Plate 
Module, version 5.4. Within this module, equations 
from the Linear Elastic Material are used to solve this 
simulation and are shown below: 
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𝜎 = 𝜎 +  C
∙∙∙

[𝛾 − 𝛾 ] (1) 

𝛾 =  𝛾 + 𝛾 + 𝛾   (2) 

𝜎 =  𝜎 + ∙∙∙ [𝜒 − 𝜒 ]  (3) 
𝜒 =  𝜒 + 𝜒 + 𝜒  (4) 
𝜎 = 𝜎 + 2𝐺

∙∙∙
(𝜁 − 𝜁 ) (5) 

𝜎 = 𝜎 + 𝑧𝜎  (6) 
𝜎 = 𝜎 + 𝜎 + 𝜎  (7) 
C = C(𝐸, 𝜈) (8) 
𝐺 = 𝐺(𝐸, 𝜈) (9) 
 
where d = plate thickness (m) 
 z = relative thickness coordinate 

 C = plane stress constitutive matrix 
 E = Young’s modulus (Pa) 
 G = transverse shear modulus (Pa) 

 γ = membrane strain (m/m) 
 ζ = transverse shear strain (m/m) 

 ν = Poisson’s ratio 

 σ = stress (Pa) 

 χ = bending strain (m/m) 

 

Three geometries were studied using the Plate 
Module. The boundary conditions stipulated no initial 
velocity and no initial displacement. The edges were 
unconstrained with no loads. The first two simulated 
geometries were made of steel as this was the material 
used in real-world experiments for these geometries. 
The violin’s material was a generic soft wood, chosen 
for its similarity to materials used in violin-making. 
The study examined eigenfrequencies between 175 Hz 
and 2700 Hz, a range chosen based on the pitch range 
of the violin, i.e. G3 = 196 Hz through ~E7 = 2637 Hz. 
 
Simulation Design 
 
There were three distinct geometries used during the 
course of the research: a composite square, a full 
square, and a traditional violin geometry. The creation 
of the initial two geometries provided an effective 
framework for the violin geometry to be confidently 
based on. All three geometries held a constant 
thickness of 10 mm. 
 
The COMSOL blog references a Chladni pattern 
application5 that simulates four different geometries. 
The simulation this app draws from was rebuilt in 
order to provide a benchmark for other geometries. 
The first geometry, the composite square, was 
modeled after an example in this application. It was 
comprised of a triangle whose results were mirrored 

three times: the first to create a smaller square, then a 
rectangle, and lastly to create a larger composite 
square of length 0.24 m as shown in Fig. 1. This 
geometry was modeled using AISI Steel 4340, which 
has a density of 7850 kg/m3, a Young’s modulus of 
205 x 109 Pa, and a Poisson’s ratio of 0.28. 
 

 
Figure 1. Composite Square Geometry 
 
The mesh for this geometry shown in Fig. 2 consisted 
of triangular elements and was physics-controlled with 
a setting of ‘finer’. It contained a total of 1043 
elements with an average quality of 0.98. 
 

 
Figure 2. Composite Square Mesh 
 
The second geometry, the full square, was a single 
square of length 0.24 m also modeled using AISI Steel 
4340. The mesh for this geometry consisted of 
triangular elements and was physics-controlled with a 
setting of ‘extremely fine’. It contained a total of 
25316 elements with an average quality of 0.99. 
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Figure 3. Full Square Geometry and Mesh 
 
Figure 4 shows the final geometry, the violin, which 
was first created in SOLIDWORKS 2019 Modeling 
Software. Its geometry was modeled after a physical 
violin, detailed in Table 1. A number of 
simplifications were imposed on the geometry: the top 
plate was rendered as a flat plate, discounting the 
curvature in the z-direction. The sound post and bass 
bar of the violin, parts of the violin used to emphasize 
shell modes, were also discounted. Lastly, the plate 
was held at a uniform thickness, whereas actual violin 
plates vary thickness throughout the body. 
 

 
Figure 4. Violin Geometry 
 
Table 1. Width and Length of Violin Geometry: 

Position of the Measured Points Dimension (mm) 
Total Length 579 
Lower Bout Width 305 
Upper Bout Width 267 
Upper Corner Width 195 
Lower Corner Width 200 
Middle Line Width 150 
f-hole inner notches distance 78 

Figure 5 shows the mesh for this geometry, which 
consisted primarily of tetrahedral elements and was 
physics-controlled with a setting of ‘extra fine’. It 
contained a total of 213397 elements with an average 
quality of 0.63. This geometry was modeled using a 
generic softwood with a density of 420 kg/m3, a 
Poisson’s ratio of 0.30, and a Young’s modulus of 
15.13 x 109 in the x–direction and 1.2 x 109 in the y–
direction. 
 

 
Figure 5. Violin Mesh 
 
Results 
 
The results from the first design, the composite square, 
matched the results from the COMSOL simulation 
exactly. However, the results shown in Fig. 6 did not 
match published experimental results of Chladni 
patterns of squares (Fig. 7). 
 

 
Figure 6. Composite Square Geometry Simulation Results 
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Figure 7. Experimental Chladni Patterns of a Square Steel 
Plate6 
 
Two issues were identified regarding the symmetry in 
the geometry. First, the design defaulted to locating 
antinodes along the hypotenuse of the original 
triangle. This appeared to interfere with the results and 
made it difficult to determine if the simulation was 
operating under the correct boundary conditions. 
Second, the patterns were all completely symmetrical. 
All previously compiled experimental results had 
some order of asymmetry in higher modes that was not 
present in the composite square results due to the 
constraints of its geometry. With these complications 
in mind, it appears that the particular geometry used in 
the COMSOL application was insufficient for more 
detailed experiments. In order to validate the 
simulation, the full square was studied. 
 
The results from the full square were found to have 
matched over half the experimentally-found modes6. 
Four of these are shown in Figs. 8a-d. 
 

 
Figure 8a. Comparison of simulation results (left) to 
experimentally found results (right) for f = 272Hz 
 

 
Figure 8b. Comparison of simulation results (left) to 
experimentally found results (right) for f = 450Hz 
 

 
Figure 8c. Comparison of simulation results (left) to 
experimentally found results (right) for f = 715Hz 
 

 
Figure 8d. Comparison of simulation results (left) to 
experimentally found results (right) for f = 3408Hz 
 
Notably, many modes exhibited an asymmetry (Fig. 
8b,d) not found in the composite square results. These 
similarities provided confidence in the simulation 
results.  
 
With the validation of the second geometry, the third 
geometry, the rendered violin, was studied. The results 
from the simulation and the physical experiment1,3,7 

visually matched the first breathing mode of the violin, 
with obvious similarities in compared results of higher 
modes as well. Figure 9a-c shows these comparisons. 
However, the correlating modes did not occur at the 
expected frequencies. 
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Figure 9a. Comparison of simulation results (left) to 
experimentally found results (right) for mode 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9b. Comparison of simulation results (left) to 
experimentally found results (right) for mode 12 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 9c. Comparison of simulation results (left) to 
experimentally found results (right) for mode 11 
 
In Figures 9b and 9c, the simulated Chladni patterns 
exhibit many of the same components present in the 
experimentally-found results, suggesting a correlation 
between the results of the two methods. Figure 9b 
shows both results having arches in the top bout with 
a nodal line in the center across the f-holes and a u-
shaped nodal line in the lower bout. The angle of the 
nodal line across the f-holes exhibited in the 
experimentally-found result may be due to the 
presence of the bass bar, which was not modelled in 
the simulation. Additionally, the shift in position of the 

u-shaped node may be due to the arched displacement 
in the z-direction.  
 
Both results in Figure 9c have the node down the 
center with a cross in the top bout and five nodal lines 
in the bottom bout. Again, the simplification of the 
simulated violin geometry may be the cause of this 
incongruence. With the inclusion of the arch of the top 
plate, the node found across the f-holes may be 
absorbed into the cross in the top bout and the star-
shaped node in the bottom bout may be separated into 
the arches seen in the experimental result. 
 
The presence of the correct mode shapes confirms the 
simulation is valid. The inconsistencies in the 
placement of the nodes and in the frequencies of the 
results however show that it still requires 
improvement. This development will be seen in the 
refinement of the geometry. The current geometry 
does not include the displacement in the z-direction 
that all violins have, nor are the varying thicknesses of 
the plate considered. 
 
 
Conclusions 
 
This paper presents the results of a modeling effort for 
violin design. Three different geometries were 
investigated to render a valid simulation. Correct 
mode shapes were found, but at somewhat different 
frequencies. Due to these discrepancies, further 
research is required. Changes in geometry show 
visible alterations in the Chladni patters, and by 
matching specific modes to experimental results, a 
refinement of the geometry is possible. The second 
phase of the project will focus on incorporating the 
curvature of the front plate in the z-direction as well as 
the modeling of different part interactions, including 
the back plate of the violin and the interaction of front 
and back plates with air cavity modes. If differences in 
resonant modes between diverse violin geometries can 
be properly modeled, then they can create another 
metric to be utilized in improving violin sound quality. 
For mass-produced violins, this could allow for a 
reduction in manufacturing costs while increasing 
sound quality. 
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Appendix 
 

 
Figure A1. Chladni Patterns of Violin Plates1 
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