Simulation study in Design of Miniaturized Mid-Infrared Sensors

X. Wang, S-S. Kim, B. Mizaikoff*
→ MIR sensors combined with quantum cascade lasers (QCL)

→ MIR GaAs/Al$_{0.2}$Ga$_{0.8}$As waveguides
 Strip waveguides
 Slot waveguides

→ Simulation studies on MIR waveguide design
Quantum Cascade Lasers (QCL)

1994 - Breakthrough in IR light source technology

- Layers of semiconductor materials create a quantum heterostructure
- Common materials are: InGaAs/AlInAs/InP and GaAs/AlGaAs

- Photons produced by intersubband transitions rather than recombination processes
- Layer dimensions dictate energy levels in heterostructure (quantum wells)
- Cascaded structures may produce multiple photons per electron

MIR Waveguide Design

Metal-organic vapor phase epitaxy (MOVPE)

Growth parameters
- MOVPE AIX – 200
- Materials used: TMGa, TEGa, TMAI, AsH$_3$,
- Horizontal reactor at 100 mbar
- $T_G = 750^\circ$ C

Process flow

Dr. Boris Mizaikoff
boris.mizaikoff@uni-ulm.de
MIR Waveguides

Towards superior mode control with GaAs/Al$_{0.2}$Ga$_{0.8}$As waveguides

- Frequency matched to QCL emission
- Well-defined evanescent field
- Superior mode control
- Toward the theoretical sensitivity limits of evanescent field sensing
Chip-integrated IR devices

→ Strip waveguide microfabrication via RIE (reactive ion etching)

→ 200/100/50... µm wide waveguide strips

→ QCL emission at 974 cm\(^{-1}\) overlaps with absorption of analyte (acetic anhydride)
Sing Mode laser of EC-QCL

Mode analysis of EC-QCL with MIR camera

→ Wavenumber: 1665 cm\(^{-1}\)
→ Duty cycle: 1%
→ Repetition rate: 100 kHz
→ Evidence of single mode pulse lasing of the EC-QCL (1575-1735 cm\(^{-1}\))
QCL Combined with Strip Waveguides

Calibration of coverage length

Measurements with strip waveguides

→ Analyte: acetic anhydride
→ 200 µm wide waveguide
→ Micro-capillary used to generate 2 nL droplets
→ pseudo Lambert-Beer law:

\[A = (\epsilon \times c \times l) r \]

EW ratio: \(r = \frac{I_e}{I_0} \)

(I_e: evanescent filed intensity, I_0: total intensity of guided light)

System response for GaAs strip waveguide as a function of the coverage length with linear fit. Each 2 nL droplet covered a diameter of 0.4 mm.
QCL Combined with Strip Waveguides

Calibration of concentration

System response to diluted acetic anhydride in diethylene glycol monoethyl ether. Each 2 nL droplet covered a diameter of 0.4 mm.

Measurements with strip waveguides

→ Analyte: acetic anhydride
→ 200 µm wide waveguide
→ Micro-capillary used to generate 2 nL droplets
→ pseudo Lambert-Beer law:
 \[A = (\varepsilon \times c \times l) r \]

EW ratio: \(r = \frac{I_e}{I_0} \)
(\(I_e \): evanescent filed intensity, \(I_0 \): total intensity of guided light)
QCL Combined with Strip Waveguides

Comparison strip waveguide vs. slab waveguide

Strip waveguide vs. slab waveguide

→ CH$_3$-C bending vibration of acetic anhydride overlap with QCL emission
→ LOD of 0.2 pL (2 pmol)
→ One order of magnitude improvement vs. slab waveguide
→ Further improved sensitivity anticipated via narrowing strip width
Mode Analysis of GaAs/Al$_{0.2}$Ga$_{0.8}$As with COMSOL

Single Mode Waveguides

RF module, Electromagnetic Waves (emw).

Geometry and Material parameters:
Core: 6 um GaAs, n=3.3
Cladding: 6 um Al$_{0.2}$Ga$_{0.8}$As, n=3.2
Wafer: GaAs (doped), n= 3.2
Air: n=1
Width of WG: 5 um
Wavelength: 6.01 um (1665 cm$^{-1}$)
Single Mode: TEM (0.0)
2D mode analysis with strip width of 5 µm
Red line stands for the cross-section in y-axis
Red arrow stands for the direction of electrical field: E_x along x-axis.

Intensity Fraction of evanescent field over the total beam is calculated to be 0.06 % along the cross-section.

E_x distribution along the cross-section with effective mode index of $n_{\text{eff}} = 3.22$.
Mode Analysis of GaAs/Al$_{0.2}$Ga$_{0.8}$As

The penetration depth D_p of evanescent field is estimated to be 1 µm in the simulation. The fraction of evanescent field is calculated to be 0.3 % for each interface along the cross-section.

E_x distribution with $n_{eff} = 3.22$. There is discontinuity of E_x on interface between the core and air ($x = 3.5, 8.5$).
E_y distribution along the line is analyzed in the diagram on the right ($n_{eff1}=3.22948$). There is discontinuity of E_y on interface of vacuum and the core ($x=2$ um).
E_y distribution along the line is analyzed in the diagram on the right ($n_{eff1}=3.22948$). There is no discontinuity of E_y on interface of vacuum and the core ($x=3.5$ and 8.5). The penetration depth D_p of evanescent field is around 1 um.
The $E_y (0, 0)$ behaves as an exponential curve and the EW ratio achieves $r_e > 1\%$ with cutoff width $D_c = 4\, \text{um}$ at $1665\, \text{cm}^{-1}$.

Reference

Dr. Boris Mizaikoff
boris.mizaikoff@uni-ulm.de
MIR Slot Waveguides

Advanced waveguide design with FEM simulations

SlotStrip waveguide vs. strip waveguide
- WG width: 10 µm
- Trench width: 200 / 600 nm

→ pseudo Lambert-Beer law:
\[A = (\varepsilon c l) r \]

→ EW ratio: \(r = \frac{l_e}{l_0} \)
(\(l_e \): evanescent filed intensity, \(l_0 \): total intensity of guided light)

→ Enhancement factor: up to 1-2 orders of magnitude expected!

Dr. Boris Mizaikoff
boris.mizaikoff@uni-ulm.de
Conclusions and Outlooks

→ Simulation studies on GaAs/AlGaAs strip waveguide

→ Optimization of single mode MIR strip waveguide
 Simulation & experiment

→ 3-D Simulation of beam propagation in strip waveguide

→ Resonator based waveguide design
Acknowledgements

Prof. Dr. B. Mizaikoff

Dr. P. Michler
Dr. R. Rossbach
Dr. M. Jetter

FIB Center UUlm
Dr. C. Kranz
Thanks for your attention!
The Electromagnetic Waves interface, analyzes frequency domain electromagnetic waves, and uses time-harmonic and eigenfrequency/eigenmode studies.

It Provides:

- Flexible what-if-scenarios
- Physics Solution
- Solving Equations

Work process:

1. Model Meshing
2. Applicate of material properties
3. Add the Physics
4. Defining the boundary conditions
5. Compute

Maxwell Equations

- Divergence equations
- Curl equations

Electric:
\[\nabla \cdot \mathbf{D} = \rho \]
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]

Magnetic:
\[\nabla \cdot \mathbf{B} = 0 \]
\[\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \]

Wave Equations

Electric:

Magnetic:

Reference: www.comsol.com

Dr. Boris Mizaikoff
boris.mizaikoff@uni-ulm.de
Waveguide structure: Slab waveguide (WG)
Polarization: TM
Mode index: $m = 0$
Refractive Index of GaAs: $n_1 = 3.3$
Refractive Index of air: $n_2 = 1$

Slab waveguide with symmetric structure does not own cut-off thickness. Penetration depth D_p show dramatical increase as thickness of waveguide narrows down to sub-wavelength range.
Cutoff width D_c of strip WG at 1665 cm$^{-1}$ are 4.5 um for E_y and 5 um for E_x TE (0,0) mode respectively.

Effective mode index n_{eff} must fulfill the range: $n_l > n_{\text{eff}} > n_c$

As strip narrows down to D_c, n_{eff} approach to n_c.

Reference

Dr. Boris Mizaikoff
boris.mizaikoff@uni-ulm.de
The strip waveguide will support higher order modes of light as \(w \) increases.

According to the simulation results from the diagram on the left, in order to avoid the generation of higher order modes of light, the width should be confined within 8 \(\mu \text{m} \) (\(D_c \) in \(E_x(1.0) \) mode).