Super-resolution Properties of the Maxwell Fish-Eye

D. Grabovičkić, J. C. González, J. C. Miñano, P. Benítez

Cedint, Universidad Politécnica de Madrid, Spain
Outline

1. Introduction
2. Spherical Geodesic Waveguide
3. Simulations in COMSOL Multiphysics
4. Conclusions
Maxwell fish-eye

\[n(\rho) = \frac{2}{1 + (\rho/a)^2} \quad (\rho^2 = x^2 + y^2) \]

All Geometrical Optics rays from point P are perfectly imaged on point Q in Geometrical Optics. J.C. Maxwell 1854
Maxwell fish-eye

\[n(\rho) = \frac{2}{1 + (\rho/a)^2} \]

\[\rho > a, \quad n(\rho) < 1 \]
Maxwell fish-eye

What happens in Wave Optics?

\[E = \frac{P_v(-\cos \theta) - e^{i\nu \pi} P_v(\cos \theta)}{4 \sin(\nu \pi)} \]

\[\nu(\nu + 1) = (ak_0)^2 \]
Experimental demonstration of $\lambda/5$ super-resolution

Super-resolution stands for the capacity of an optical system to resolve below by the diffraction limit.

[Yungui Ma, Singapore]
Outline

1. Introduction
2. Spherical Geodesic Waveguide
3. Simulations in COMSOL Multiphysics
4. Conclusions
Spherical Geodesic Waveguide

Cylindrical 3D MFE lens

\[n(\rho) = \frac{2}{1 + (\rho/a)^2} \]

Each \(z = \text{constant} \) plane is mapped on a different sphere via stereographic projections.

Material with spherical symmetry

\[n(r) = \frac{a}{r} \]

\[r = \sqrt{x'^2 + y'^2 + z'^2} \]

[J.C. Miñano, P. Benítez, J.C. González, NJP, 12 (2010)]
Spherical Geodesic Waveguide

\[D_e = 10 \text{ mm} \quad D_i = 5 \text{ mm} \quad L = 20 \text{ mm} \]

\[R_M = 1005 \text{ mm} \quad R_m = 1000 \text{ mm} \]

\[n(r)=\frac{R_M}{r} \approx 1 \]
Microwave circuit made up of the two ports and the spherical waveguide

When \(V_d^+ = 0, I_d^+ = 0 \)

\[
\begin{bmatrix}
V_s^- \\
V_d^-
\end{bmatrix} = \begin{bmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{bmatrix} \begin{bmatrix}
V_s^+ \\
V_d^+_s
\end{bmatrix}
\]

\[
V_d^- = S_{21} V_s^+ \\
V_s^- = S_{11} V_s^+
\]

\[
P_I = \frac{1}{2} \frac{|V_s^+|^2}{Z_o} \\
P_T = P_I |S_{21}|^2 \\
P_R = P_I (1 - |S_{21}|^2)
\]
Outline

1. Introduction
2. Spherical Geodesic Waveguide
3. Simulations in COMSOL Multiphysics
4. Conclusions
Meshing in Comsol
Transmitted power for different frequencies

Source

Drain (passive)

Z_0

Graph showing transmitted power for different frequencies.
Transmitted power for different frequencies

$\theta = 2^\circ, \ l = \lambda/33$
$\lambda = 1.15\ m$
Simulation of $\lambda/500$ super-resolution
Simulation of $\lambda/500$ super-resolution
Outline

1. Introduction
2. Spherical Geodesic Waveguide
3. Simulations in COMSOL Multiphysics
4. Conclusions
Conclusions

- Super-resolution properties of the Maxwell Fish-eye are analyzed using Spherical Geodesic Waveguide (SGW).
- Simulations of the SGW show super-resolution up to $\lambda /500$ at microwave frequencies.
- The super-resolution is achieved using an approximate model of the SGW (the model having $n=1$ inside the waveguide) convenient for manufacturing.