

Modelling the Wall Vibrations of Brass Wind Instruments

Vasileios Chatziioannou and Wilfried Kausel

Institute of Musical Acoustics, Univ. of Music, Vienna

Motivation

differences observed between damped and undamped instruments (players & measurements)

- wall vibration mechanism not easily explained
- COMSOL can couple structural mechanics with pressure acoustics

Hypothesis

axi-symmetric oscillations are responsible for the observed differences

Even though smaller in amplitude, their effect is magnified at the high-flaring regions of the bell

Axial resonance

Structural frequency domain study

V. Chatziioannou, IWK, October 2011

Comparison with a simplified model

Modelling the trumpet walls using a mass-spring model (Finite-Difference method)

- similar wall displacement as in COMSOL
- differences mainly located at the rim of the bell

Axial resonance (2)

Resonance frequencies affected by:

- Rim wire (rotational motion)
- Calculation method

6

Determination of rim radius

matching of elliptical modes as measured by

Boundary conditions

Fixing portions of the brass using braces can change the behaviour drastically! The same is true for adding masses.

Example: Two fixing points 20cm and 40cm away from the rim: "Mouthpiece" resonance and bell resonance

at separate frequencies!

On top of that:

Player's embouchure and his grip add mass and unknown damping!

Acoustic-Structure interation

frequency domain simulations trumpet modelled as linear elastic material I frictional losses at the walls are neglected I

radial coordinate

tube dimensions are small:

viscous and thermal losses at the walls **must** be taken into account.

Multiphysics coupling

Comparison with lossless formulation

Input Impedance of a 1 meter long cylindrical tube

V. Chatziioannou, IWK, October 2011

Input Impedance

Transfer function

Damped vs. vibrating walls (measured)

[Kausel, Zietlow and Moore, JASA 128(5)]

Input Impedance

Transfer function

Bell displacement caused by a vibrating piston stimulus

Conclusions

Axisymmetric modes:

can affect the Input Impedance and Transfer function of the instrument

- may exhibit a wide band effect
- are strongly influenced by boundary conditions

can explain measurement differences between damped and undamped brass wind instruments

Thank you for your attention!

Comments

