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Why do we need HEV, PHEV, EV?

� Reduce tailpipe emissions

� Increased fuel economy
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Automotive Adoption Metrics*: 

Hierarchy of Needs

� Must work
� Performance, life and robustness

� Must fit (Wh/liter) in the car
� Package without compromising crash performance and 

expected interior utility

� Must be cost effective
� Life of vehicle performance

� Cost of fuel influence

� Cost of carbon influence

� Value based on power and/or energy density

� Value based on degree of uniformity

� Must be mass effective (Wh/kg and W/kg)
� Increased range

* Courtesy: Ted Miller, Ford Motor Company
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Why work on silicon and other new, 

advanced materials?
If battery pack has sp. energy similar to 

gasoline, then for 500 miles (~ICE car), we 

should need 115 kg pack. With present Li-

ion ~ 1500 kg pack-accounting for 30 to 40% loss  

from cell to pack; volume also increases!

~ For 175-200 miles ~ 200 kg 

(USABC goal: 40 kWh pack)

Specific Energy (Wh/kg)  

= Voltage (V)  x Specific capacity (Ah/kg)

Hence, to increase Wh/kg, 

1) High voltage positive electrode material

2) Electrode materials with high specific 

capacity e.g. silicon (for negative 

electrode), undergoes 300% volume expansion

Source: V. Srinivasan webpage, LBNL
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Li-Si/ Separator/ Positive Dual Lithium Insertion Cell

� Macro-homogenous model
� Porous electrode & concentrated solution 

theory

� Solved in cell sandwich direction
� Within the porous electrode (s), solid 

phase transport solved in the particle 
domain

� Interfacial reaction @ electrode/
electrolyte interface

� Single particle model�
� confirmed that U vs. x curve has path 

dependence

� For nanoparticles: OK to use constant 
particle size for solid phase transport & 
neglect stress

� Slow kinetics

� Reservoir introduced
� Accessed from separator region

� Mechanical constraint above 
electrode to maintain rigidity

� Convection in z-dir 

� Superficial volume average velocity as 
reference

@negative electrode particle/electrolyte interface:

Composite positive 

electrodeLn

Separator

Lp z=L

Ls

Current 

Collector
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Cell sandwich model development 

continued…

� Volume changes ~ porosity changes

� Material balance in matrix phase 

� Electrode dimension changes neglected

� Depends on extent of reaction

� Transport properties , i.e. D(c), κ(c ), 

� Function of concentration

� Effective properties – function of varying porosity : Deff (c ), 
κeff(c ), σeff

� Specific interfacial area (total interfacial area /superficial volume)

� Function of porosity and varying particle radius*

 0t
+

* Expression from  J. Electrochem. Soc, 157, 10, A1139-A1151, 2010.
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Outline of Model Equations

ε( Negative 

Matrix)

Equation type Phase Region Dependent 
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Outline of Model Equations Continued…

Equation type Phase Region Dependent variable

Faraday’s law Relation between 

divergence of solution 

phase current  (i2) & 

pore wall flux (jn)

i2

Butler-Volmer 

kinetics

Electrolyte-

electrode interface
jn = f ( Φ1, Φ2, U (cs),i0) ; 

i0 = f (k, c, cs)

For Li-Si/separator/ Li 

foil  cell, electrolyte-

lithium foil interface

Φ2 

Boundary condition

(ULi/Li+ =0, Φ1 =0)

Also, i1+ i2=I

�@ z=0 & z= L, i1=I ; 

�Separator region, i2=I & i1=0 I/FN

cLxx

=

=∇==

+interface, foil  Li/ @Separator

cell, foilagainst  If

0 , &  0@
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Present knowledge & intuition for 

design of Li-Si electrodes

� Low initial porosity

� If both porosity & electrode dimension changes possible/allowed

� Higher utilization , but  short circuit  & loss of mechanical 

integrity

� If only porosity changes 

� Possible that ε =0 , before complete utilizatiion

� Thinner electrode*

� High initial porosity  

� Better utilization & possibly avoid electrode dimensional changes

� Thicker electrodes*

* for a given capacity
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Preliminary considerations for design of  Li-Si / 

Separator/ Positive Dual Lithium Insertion Cell

� Charge transfer kinetics @ Li-Si/electrolyte interface slow

� Limits utilization at medium to high rates in Li-Si/ separator/ 

lithium foil cell

� High silicon electrode specific capacity � greater mAh/cm2

possible  (for same thickness as carbon electrode)

� However, greater current across separator���� higher IR 

drop

� ohmic and transport limitations possible across thick positive 

porous electrode (in an attempt to match capacity of Li-Si)



12

Modeling in COMSOL 3.5a vs. 4.2 

� COMSOL 3.5a
� PDE general form (1D) for 

� charge transport in solid matrix and ionic (electrolyte) phase 

� species transport in electrolyte phase

� porosity changes

� Diffusion (2D) for solid phase 

� Ability to modify equations in the library battery model and build upon it is easier

� COMSOL 4.2
� Advantages: 

� Material properties library available

� Parametric sweep for different electrode thicknesses

� Option 1: Batteries and fuel cells module� lithium ion battery physics interface �add 
porous electrode nodes

� Study different particle shapes

� Difficult to introduce additional phenomena or modify existing one in porous electrode 
node

e.g porosity changes, particle growth and (may be stress too), specific interfacial 
area changes

� Option 2: Use comparatively generic physics interfaces from chemical species transport or 
the general PDE form 
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Results from Li-Si/separator/foil cell

(Simulations in COMSOL 3.5a)

Ref: R. Chandrasekaran, T.F. Fuller, 

J. Electrochem. Soc. , 158 (8) A859-A871 (2011)
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Potential vs. utilization in a Li-Si/ 

separator/Li foil cell @ different rates
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Porosity & Concentration Profile for ε=0.33, 

12.5 µm @ C/10 rate

Separator
Current 

Collector

• 70% utilization  only
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Trade-off between utilization (@ different rates) & 

volumetric energy density –Optimization of thickness of 

the electrode

� For slow kinetics

� Lithiation @ ≥ C-rate:

� Capacities ≠ f (electrode 
thickness); Lower utilization

� Lithiation @ ≤ C/2 rate:

� Thinner, less porous electrodes: 
capacity obtained limited by 
plugging of the pores

� Thicker, porous electrodes : 
Capacity obtained is higher and 
remains invariant

� If kinetics improved �better 
performance esp. at medium to 
high rates.
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Variation of specific interfacial area 

during lithiation

� Why is ‘a’ important?

� Li-Si system- kinetics dominate

� Low temperature performance 

� ε decreases, Rsp increases � ‘a’
decreases and then increases

� At higher rate of lithiation, largest 
change occurs at the separator / 
electrode interface (due to larger local 
reaction rate).
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During de-lithiation @ C-rate…

� Short times : Low porosity� transport 
limitations� Li+ concentration increases with time 
in silicon porous electrode

� Medium/Long times: Porosity increases�
Gradients relax� Li+ concentration decreases with 
time in silicon porous electrode* 

� Performance limited by initial SOC (that attained 
from previous lithiation step) & final porosity 
possible from electrode design

* Accompanied by slight increase in the separator region.

2C
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Conclusions from Li-Si/separator/Li 

foil cell
� Developed one-dimensional flow model for lithium-silicon composite electrode/ separator/ 

lithium foil cell

� Includes porosity changes ; reservoir to accommodate displaced electrolyte

� (Slow) charge transfer kinetics dominate

� First time, application-based designing of silicon electrodes suggested

� If kinetics improved, utilization increases, esp. at medium to high rates;  Then initial porosity 
& thickness decide performance

� Lithiation limits silicon electrode performance vs. lithium foil

� Nano-electrode particles – no solid phase limitations

* Lithiation of silicon electrode +Same capacity as the high initial porosity� thickness varied

System Limited by kinetics 

Utilization of active material limited; similar performance for thick and thin electrodes (of 

same capacity , i.e. different porosities) 

High-rate*

(≥ C/2)

Plugging of pores� sharp reduction in cell potential � cell 

performance limited to ~ 70%

Better utilization (~ 95%)Low-rate*

(C/10)

Low Initial Porosity+High Initial PorosityApplication
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Ongoing work

� Analysis of limitations in the Li-

Si/separator/positive insertion electrode cell under 

different conditions

� Any other troubleshooting as required with 

COMSOL 4.2!
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� Mr. Ted Miller (manager)
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