Assessment of Spatial Variably Saturated Flow by Irrigation Moisture Sensors in 2-Dimensions using COMSOL-Multiphysics 4.1

A. Boluwade, and C.A. Madramootoo
Bioresource Engineering Department, McGill University, Ste Anne De Bellevue, Quebec, Canada.
Email: alaba.boluwade@mail.mcgill.ca
Problem Statement

Air

Water

Soil

Particle
Problem Statement

- Soil’s capacity to transmit and store moisture as water enter and fill the pore spaces

- Major challenges using Richard’s Equation is the complexity and non-linearity of its coefficients
Objective of Study

Determination and visualization of the localized effective saturation distribution around irrigation sensors after various time steps.
Modeling Procedure

- A hypothetical soil column 4 m by 4 m, 7 irrigation sensors inserted and spaced at 0.5 m

- Homogeneous soil properties with characteristics taking from “Solved with COMSOL Multipysics 4.1. Variable Saturated Flow”

- Richards Equation interface in Comsol was applied
Geometry and Meshing
Governing Equations

\[\left[C + S_e S \right] \frac{\partial H_p}{\partial t} + \nabla \cdot \left[-K \nabla (H_p + D) \right] = 0 \]

- \(H_p \) = Pressure head [m]
- \(C \) = Specific Capacity [m\(^{-1}\)]
- \(S_e \) = Effective Saturation
- \(S \) = Storage Coefficient [m\(^{-1}\)]
- \(t \) = time [s]
- \(K \) = Hydraulic Conductivity [ms\(^{-1}\)]
- \(D \) = Coordinate (x,y,z) for the vertical elevation [m]
Boundary Conditions

$Hp = Hp_0$

$Hp_0 =$ initial pressure head which is constant through the column

Free draining
Numerical Simulations

- The Richard’s Equation interface which automated van Genutchen formulae in Comsol Multiphysics was used.

- Time dependent for 60, 300, 900, 1200, 7200 seconds.
Results
Results
Results
Relevance of Results

http://www.landscapeirrigation.com/

http://www.greenhousegrower.com
Conclusion

- COMSOL Multiphysics have been demonstrated as a capable tool to solve this problem.

- Location of sensors and what orientation to use in irrigation water management experiments are very important for sustainable agriculture.
Drs. Andrew Hinnel, Alex Furman and Ty Ferre (Department of Hydrology and Water Resources, University of Arizona) who originally worked the problem in PDE interfaces
References

Questions