NANOPHOTONICS

AND

Nonlinear

OPTICS

Presented at the 2011 COMSOL Conference in Boston

Simulation of Field Enhancement in Anisotropic Transition Metamaterials using COMSOL

Apra Pandey and Natalia M. Litchinitser University at Buffalo, The State University of New York

Left-Handed Materials or Negative Index Materials

Left-Handed or Negative Index Material (NIM) if

Negative Index Materials: definition

Materials with antiparallel k and S

Can be realized in

Double negative metamaterials

 $\varepsilon < 0, \mu < 0$

V. Veselago, Sov. Phys. Usp. 10, 509(1968) Anisotropic hyperbolic metamaterial waveguides

 $\mathcal{E}_{x} > 0, \mathcal{E}_{y} < 0$

D. R. Smith, D. Schurig, PRL 90, 077405 (2003) R. Wangberg, J. Elser, E. E. Narimanov, V. A. Podolskiy, JOSA B **23**, 498 (2006)

4 Transition Metamaterials

<u>Transition metamaterial</u> is a graded-index metamaterial with refractive index varying from positive to negative values (or vice versa)

- Resonant electromagnetic field enhancement and resonant absorption at oblique incidence in the vicinity of the point where ε and μ (or n) change signs
- Potential applications: <u>low-intensity</u> <u>nonlinear optics</u>, polarization sensitive devices, wave concentrators

Spatial distribution of Electric field.

Litchinitser et al, OL 33, 2350 (2008), Kim et al., Opt. Express 16, 18505 (2008), Dalarsson, Opt. Express 17, 6747 (2009), Mozjerin, OL 35, 3240 (2010), Gibson, Opt. 13, 024013(5) (2011), Opt. Lett. (2011)

Motivation

- Previous studies focused on <u>double-negative</u> <u>metamaterials</u>, i.e. both dielectric permittivity ε and magnetic permeability μ were assumed to change sign
- However, designing μ is possible but challenging
- <u>Our goal</u> is to investigate propagation of electromagnetic waves in anisotropic graded-index metamaterials with $\mu = 1$

Anisotropic Materials

L. V. Alekseyev, E. Narimanov, Opt. Express 14, 11184 (2006)

B Isotropic-Anisotropic Interface

Case1: When \mathcal{E}_x changessign

Case 2: When ε_v changessign

Evolution of Dispersion Relation Case 1: ε_x is graded

Generation Structure Struc

Design of Hyperbolic Transition Metamaterial

Oblique incidence

BEnhancement in case of Oblique Incidence

Normal Incidence

B Evolution of Dispersion Relations

Case 2: $\boldsymbol{\epsilon}_{y}$ is graded

Real part of $\boldsymbol{\epsilon}_{y}$ permittivity along x-direction

Oblique Incidence

 H_{z}

Surface: Magnetic field, z component [A/m] Max: 1.244 <u>×10</u>-6 1.8 1 1.7 1.6 1.5 1.4 0.5 1.3 1.2 1.1 y 1 0.9 0.8 0.7 10 (m) 0.6 0.5 -0.5 0.4 0.3 0.2 0.1 -1 0 0.5 1.5 2.5 3 3.5 4.5 5 5.5 0 2 4 1

 χ (m) x10⁻⁶ Min: -1.244

Enhancement in Case of Oblique Incidence

Normal Incidence

Conclusion

- We investigated EM wave propagation in graded anisotropic metamaterial structures.
- Dispersion relation transitions from elliptical to hyperbolic
- We demonstrate enhancement of xcomponent of electric field in anisotropic transition region in case of oblique TM wave

Acknowledgements

• I would like to thank Gayatri Venugopal for helpful discussions.

• This work was supported by US Army Research Office Award # W911NF0910075

THANK YOU!