

Reassessing Electrothermal Simulation Techniques to Develop Realistic Models

Thomas Lijnse PhD Student – Biomedical Engineering University of Calgary, Alberta, Canada

Microfluidics

One of the fastest growing fields of study in modern medicine

Convery et al. Micro and Nano Engineering (2019)

https://www.europeanpharmaceuticalreview.com/ news/72373/lab-on-a-chip-bacterial-cells/

Electrokinetic Pumping

Application of electric field to a fluid to cause bulk fluid flow or particulate flow

Chen et al. Expert Opin. Drug Deliv. (2007)

lliescu et al. Biomicrofluidics (2009)

Alternating Current Electrothermal Flow

Symmetrical Electrodes

Asymmetrical Electrodes

Zhang et al. Microfluid Nanofluid (2011)

ACET Simulations

Typical setup consists of three physics models:

- Laminar Flow:
 - Microfluidics by nature have extremely laminar flow
 - Body force derived by literature
 - Zero inlet pressure, no slip conditions
- Heat Transfer in Solids/Fluids
 - External room temperature
 - Heat transfer through the channel walls
- Electrostatics/Electric Currents
 - Electric conduction limited to the fluid
 - DC equivalencies of AC signals are made

Two Dimensional Simulations

Several assumptions have been made to simulate ACET systems

- Infinite channel width
- Planar electrodes
- Heating limited to Joule effects
- Inert electrodes
- Effects from literature including:
 - Zero impact from convection
 - Temperature independent viscosity

3

Lijnse et al. SN Applied Sciences (2020)

Channel Heating

COMSOL Electromagnetic Heating (EMH)

 Determined to have no impact on channel flow under certain conditions

Joule heating

- Dielectric heating from oxide layer Electrode cooling
- Electrodes act as a heatsink Convective cooling
- Localized energy losses Heating from external sources
- Impacts from microscope illumination, fluctuations in ambient temperature, etc.

Change	Output Flow Rate (um/s)	Introduced Variance
EMH Module Stationary Study	9.42E-05	0.00%
Heat convection from velocity field	9.15E-05	-2.85%
Electrodes fixed at 293.15 K	5.42E-05	-42.47%
Temperature dependent viscosity	1.08E-04	14.4%

Electrode Protrusion and Coatings

- Typical electrodes protrude ~100s of nanometers into the channel
- Simulation boundaries within realistic range
- Increase in flow rate until 35 micron
- Likely due to increased electric field presence and modified vortex location

Variance of Flow Rate Using Raised Electrode Arrays

UNIVERSITY OF

Electrode Protrusion and Coatings

Three Dimensional Modelling

- Key factor impacting fluid flow
- Most computationally intensive adjustment
- Implications from data are that the series will converge, but not until width is in excess of several centimeters

Conclusions

- Three dimensional models are most physically relevant
- Minor changes increase accuracy
- Computational resources, while improved are still limited
- Several overall improvements to ACET design outcomes

Change	Output Flow Rate (um/s)	Introduced Variance
Protrusion of electrodes into the channel (120nm)	1.03E-04	9.36%
Heat convection from velocity field	9.15E-05	-2.85%
Temperature dependent viscosity	1.08E-04	14.4%
Three-Dimensional Channel Model (5:1 Width:Length)	7.36E-05	-21.8%

Acknowledgements

- Dr. Colin Dalton
- Stirling Cenaiko
- Graciela Moscoso
- Dylan Finch
- Malcolm Haynes
- Microsystems Hub

ICOMSOL

Contact: thomas.lijnse@ucalgary.ca